期刊文献+

子空间格代数上的ξ-Lie导子 被引量:1

ξ- Lie derivations on subspace lattice algebras
下载PDF
导出
摘要 探讨相应于具有非平凡极大元的子空间格L的代数Alg L上ξ-Lie导子δ的结构,得到了当ξ=1时,δ是Alg L上的一个导子与一个将交换子映为零的从Alg L到FI的线性映射的和;当ξ≠1时δ是一个导子. ξ-Lie derivations of subspace lattice Algebra AlgL for which L has the the nontrivial greatest element are studied. The results are obtained that if ξ = 1,then δ is the sum of a derivation on Alg L and a linear map from AlgL into FI vanishing on commutators,and if ξ≠1,then δ is a derivation.
作者 王婷 高景利
出处 《南阳师范学院学报》 CAS 2015年第6期1-4,共4页 Journal of Nanyang Normal University
基金 国家数学天元基金项目(11426140) 南阳师范学院专项项目(ZX2014080 ZX2013015)
关键词 子空间格代数 导子 LIE导子 subspace lattice algebra derivation Lie derivation
  • 相关文献

参考文献1

二级参考文献14

  • 1Brear, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie map- pings. Trans. Amer. Math. Soc., 335, 525-546 (1993).
  • 2Cheung, W. S.: Lie derivations of triangular algebras. Linear Multilinear Algebra, 51, 299-310 (2003).
  • 3Johnson, B. E.- Symmetric amenability and the nonexistence of Lie and Jordan derivations. Math. Proc. Cambridge Philos. Soc., 120, 455-473 (1996).
  • 4Mathieu, M., Villena, A. R.: The structure of Lie derivations on C*-algebras. J. Funct. Anal., 202, 504-525 (2003).
  • 5Zhang, J.: Lie derivations on nest subalgebras of von Neumann algebras. Acta Mathematica Sinica, Chinese Series, 46, 657-664 (2003).
  • 6Brooke, J. A., Busch, P., Pearson, B.: Commutativity up to a factor of bounded operators in complex Hilbert spaces. R. Soc. Lond. Proc. Set. A Math. Phys. Eng. Sci., 458, 109-118 (2002).
  • 7Cui, J., Park, C., Hou, J.: Additive maps preserving commutatity up to a factor. Chinese Ann. Math. Ser. A, 5, 583-590 (2008).
  • 8Kassel, C.: Quantum Groups, Springer-Verlag, New York, 1995.
  • 9Qi, X., Hou, J.: Additive Lie ( Lie) derivations and generalized Lie ( Lie) derivations on nest algebras. Linear Algebra Appl., 431, 843-854 (2009).
  • 10Hou, J., Qi, X.: Generalized Jordan derivation on nest algebras. Linear Algebra Appl., 430, 1479-1485 (2009).

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部