摘要
通过将半监督学习的思想引入到模糊C-均值聚类方法中,提出一种基于半监督的模糊C-均值聚类算法,有效解决了模糊C-均值聚类算法随机选取初始聚类中心导致聚类结果局部收敛的问题,能客观获取最佳聚类数目和初始聚类中心.实验结果表明,与传统模糊C-均值聚类算法相比,基于半监督的模糊C-均值算法在一定程度上减少了迭代次数,降低了对初始聚类中心的依赖性.
A fuzzy C-means clustering algorithm based on semi-supervised learning was proposed by introducing semi-supervised learning into fuzzy C-means clustering algorithm.It has effectively solved the problem that the initial clustering centers random selection of fuzzy C-means algorithm can easily cause the local convergence and affects the clustering.The proposed algorithm can objectively obtain the optimal number of clusters and the initial cluster centers.Compared with the traditional FCM,our method can reduce the number of iterations and the dependence on initial cluster centers.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第4期705-709,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11226263
11201057
61202261)
吉林省自然科学基金(批准号:201215165)
吉林省高校科学技术研究计划项目(批准号:2015(248))
关键词
半监督学习
模糊C-均值聚类算法
信息熵
semi-supervised learning
fuzzy C-means clustering algorithm
information entropy