摘要
采用小波神经网络方法对信息量较大、难提高压缩效率的计算全息图进行数据压缩,利用其较强的非线性映射和函数逼近能力自适应地调整和处理全息图,可大幅减少信息冗余,得到较好的压缩效果.实验结果表明:利用该算法能得到1.56%的低压缩率,此时的再现像较清晰,失真较小;与常用压缩算法相比,当压缩率很低时,用小波神经网络压缩全息图是一种切实可行且更有效的方法.
The algorithm of wavelet neural network was presented to compress the data of computergenerated hologram which has much more information and is difficult to raise compression rate.The method can adaptively adjust and process the nonlinear hologram with a strong ability of nonlinear mapping and functional approximation,so that it can greatly reduce the redundancy of information.The obtained compression rate is as low as 1.56% in the experiments,and at this time the reconstructed image is relatively clear with small distortion. Compared with several current compression algorithms,the proposed hologram compression method of wavelet neural network is feasible and more effective with regard to those holograms with low compression rate.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第4期725-729,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61303132)
国家留学基金(批准号:201308220163)
教育部国际合作科研项目(批准号:Z2011138)
吉林省自然科学基金(批准号:20101523)
吉林省科技厅科技支撑计划项目(批准号:20100368)
吉林省教育厅"十二五"科学技术研究项目(批准号:吉教科合字[2014]第142号)
关键词
计算全息
图像压缩
小波分析
小波神经网络
computer-generated hologram
image compression
wavelet analysis
wavelet neural network