期刊文献+

基于视频图像的车辆计数新方法 被引量:3

A New Method for Vehicle Counting Based on Video Images
下载PDF
导出
摘要 针对道路车流量检测问题,从便捷性、实时性角度出发,结合视频图像处理技术,对视频车辆计数进行了研究。直接在RGB图像中进行自适应背景更新,以此为基础,对RGB图像进行背景差分,提取出运动车辆区域,避免了复杂环境下图像灰度化过程中的信息丢失;利用当前帧和背景帧的HSI颜色空间信息来滤除阴影;通过在视频图像中设置固定虚拟检测区,实现对车辆的计数。实验结果表明,该方法计算量较小,白天情况下的计数准确率在89.58%以上;夜间的计数准确率较低,还需进一步研究改进。 A new vehicle counting method is put forward based on video images processing technology for road traffic statistics considering the reliability and the real-time. Adaptive background updating was done directly on RGB images,based on which,vehicle movement area could be extracted via background subtraction. This could avoid the loss of information in the course of gray in complex environments. And then shadows were filtered using the H component of HSI color model of current frame and background frame. The final counting work was done via setting a fixed virtual detection zone. Experimental results show that vehicle counting accuracy based on the method proposed by this paper is more than 97. 22% during the daytime. In addition,the computing time is less. The accuracy of the count is low at night,which is needed to be improved.
作者 杨昌瑞
出处 《公路工程》 北大核心 2015年第3期250-252,256,共4页 Highway Engineering
关键词 交通运输 车辆计数 自适应背景更新 滤除阴影 图像处理 transportation vehicle counting adaptive background updating shadow elimination image processing
  • 相关文献

参考文献10

  • 1Bo B,Cao K, Cai X. Framework of Security for the RailwayIntelligent Transportation System [ C ]//Fourth InternationalConference on Transportation Engineering. 2013.
  • 2Chen Y L, Wu B F, Huang H Y, et al. A real-time visionsystem for nighttime vehicle detection and traffic surveillance[J]. Industrial Electronics, IEEE Transactions on, 2011, 58(5): 2030-2044.
  • 3Norbert Buch,Sergio A. Velastin, Janes Orwell. A review ofcomputer vision techniques for the analysis of urban traffic[J], IEEE Transactions on Interlligent Transportation Sys-rema,2011,12(03) :920 -939.
  • 4Yang M, Liu R M, Liu Q,et al. A traffic flow detection algo-rithm in the intersection electronic police system based on vid-eo [ J ]. Advanced Materials Research f 2012, ( 383 ) : 4982 -4986.
  • 5Vargas M, Milla J M,Toral S L, et al. An enhanced back-ground estimation algorithm for vehicle detection in urban traf-fic scenesf Jj. Vehicular Technology, IEEE Transactions on,2010,59(8) :3694 -3709.
  • 6Unzuela L, Nieto M, Cort6s A, et al. Adaptive multicuebackground subtraction for robust vehicle counting and classifi-cation [J] .Intelligent Transportation Systems, IEEE Transac-tions on,2012,13(2) :527 -540.
  • 7Rodrfguez T, Garcfa N. An adaptive, real-time, traffic moni-toring system[J]. Machine Vision and Applications, 2010,21(4):555 -576.
  • 8Liu J, Zhao Y, Yuan Y, et al. Vehicle capturing and count-ing using a new edge extraction approach [ C ]//IntelligentTransportation Systems (ITSC),2011 14th International IEEEConference on. IEEE ,2011:62 -66.
  • 9Linbo Z, Feng W, Ming H, et al, A vehicle counting algo-rithm using foreground detection in traffic videos[C]//3rd In-ternational Conference on Multimedia Technology ( ICMT 一13). Atlantis Press,2013:232 -239.
  • 10Sanin A, Sanderson C, Lovell B C. Shadow detection : Asurvey and comparative evaluation of recent methods [ J ].Pattern recognition,2012,45(4) : 1684 - 1695.

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部