期刊文献+

表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子 被引量:3

Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization
原文传递
导出
摘要 原子转移自由基聚合(ATRP)是目前为止最具工业化应用前景的活性/可控自由基聚合方法之一,其最大特点是可以得到分子量分布窄、链结构规整的聚合物,而且可聚合的单体种类多,反应条件温和并易控制。表面引发ATRP(SI-ATRP)特别适合于无机材料表面接枝聚合物或无机/有机复合材料的制备,近年来引起了国内外研究者的高度关注。本文首先对SI-ATRP的反应过程与特点做了阐述,然后重点述评了用SI-ATRP法合成以非金属氧化物纳米粒子、金属氧化物纳米粒子、金属纳米粒子或其他无机纳米粒子为核的无机/有机复合纳米粒子的研究进展,最后对未来用SI-ATRP法合成无机/有机复合纳米粒子的发展方向和研究前景进行展望。 Atom transfer radical polymerization( ATRP) is by far one of the most promising living/controlled radical polymerization methods in industrial application. It is able to get the polymers w ith narrow molecular w eight distribution and regular chain structure. Furthermore,many kinds of monomers can be polymerized by ATRP, and its reaction condition is mild and easy to control. Surface-initiated atom transfer radical polymerization( SI-ATRP) is a good method for grafting the polymers w ith regular structure on the surfaces of inorganic materials or synthesizing inorganic/organic composite materials. In recent years,SI-ATRP technique has attracted much attention from domestic and abroad researchers. In this paper,the reaction process and characteristics of SI-ATRP are elaborated,and then the progress in preparation of inorganic/organic core-shell structured composite nanoparticles based on non-metal oxide nanoparticles,metal oxide nanoparticles,metal nanoparticles,and other inorganic nanoparticle as core by SI-ATRP is highly review ed. Finally,the outlook on future development of SI-ATRP for synthesizing inorganic/organic composite nanoparticles is presented.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2015年第7期831-840,共10页 Progress in Chemistry
关键词 表面引发原子转移自由基聚合 可控自由基聚合 无机/有机复合纳米粒子 核壳结构 surface initiated atom transfer radical polymerization controlled radical polymerization inorganic/organic composite nanoparticles core-shell structure
  • 相关文献

参考文献70

  • 1Thanh N T K, Green L A W. Nano Today, 2010, 5(3) : 213.
  • 2Auffan M, Rose J, Bottero J :, Lowry G :, Jolivet J P, Wiesner M R. Nat. Nanoteehnol. , 2009, 4(10) : 634.
  • 3Choi J, Hui C M, Sehmitt M, Pietrasik J, Margel S, Matyjazsewski K, Boekstaller M R. Langmuir, 2013, 29 (21) : 6452.
  • 4董旭,刘晓云,查刘生.载金或银纳米粒子智能杂化微凝胶的合成、性能及其应用[J].化学进展,2013,25(12):2038-2052. 被引量:5
  • 5Banerjee S, Paira T K, Mandal T K. Polym. Chem. , 2014, 5 (14) : 4153.
  • 6Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Sielovan T M, Kiekelbiek G, Valiant T, Hoffmann H, Pakula T. Macromolecules, 1999, 32 (26) : 8716.
  • 7Chen Y Z, Yuan X Y. Chemical Research in Chinese Universities, 2014, 30(2): 339.
  • 8Hui C M, Pietrasik J,.Schmitt M, Mahoney C, Choi J, Boekstaller M R, Matyjaszewski K. Chem. Mater. , 2014, 26 (1) : 745.
  • 9Bach LG, Islam M R, VoTS, Kim S K, Lira KT. Journal of Colloid and Interface Science, 2013, 394: 132.
  • 10Leone G, Giovanella U, Bertini F, Hoseinkhani S, Porzio W, Rieci G, Botta C, Galeotti F. J. Mater. Chem. C, 2013, 1 (40) : 6585.

二级参考文献129

共引文献24

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部