期刊文献+

超分子化学中的多点统计作用:设计与应用

Multisite Statistical Interactions in Supramolecular Chemistry: Design and Application
原文传递
导出
摘要 在超分子主客体作用力中,多点统计作用和多价作用及多配体作用有根本差别,前者对主体的空间形态、尺寸和电子环境没有严格要求,实现起来比较容易。多点统计作用是一种动态几率作用,合理设计主体的电子环境,可以显著增强主客体作用强度;而通过拓扑(几何)环境的设计可以削弱其他分子的统计竞争作用,同样可以显著增强主客体作用,作用常数提高近十万倍。利用多点统计作用可以实现对水中微量和痕量污染物的高效捕捉,包括尺寸较小的重金属离子、染料和那些高度亲油的致癌芳烃;也可用于多肽的分离提取,最低能达到飞摩尔级以下的痕量提取;调控统计作用几率还可以以热力学方式调控客体释放速率。本文就超分子体系中的多点统计作用的应用及特点进行了总结。 Among supramolecular interaction styles,a multisite statistical interaction is fundamentally different from multivalent or multiligand interactions because the former has no rigorous requirement on the morphology,size and electronic environment of the host,thus is ready to realize. M ultisite statistical interactions are dynamic and random in nature,w ith reasonable design of the electronic environment of a host,the host-guest interaction strength can be significantly enhanced. While by topology design,the competitive statistical interaction by other molecules can be w eakened. This can similarly lead to enhanced host-guest complement,and the binding constant can be improved by 105-fold. With the aid of multisite statistical interactions,highly effective capture of the micro- and trace pollutants in w ater is realized,including small-sized heavy metals,dyes and the highly hydrophobic and carcinogenic aromatic compounds. It can also be applied in peptide extraction at sub-femtomolar level. Tuning the host-guest statistical probability can lead to thermodynamically w ell-controlled release of a guest from a nanocapsule. The feature and application of multisite statistical interactions are here review ed in this article.
作者 陈峰 万德成
出处 《化学进展》 SCIE CAS CSCD 北大核心 2015年第7期841-847,共7页 Progress in Chemistry
基金 国家自然科学基金项目(No.51273149)资助~~
关键词 超分子 多点统计 水处理 提取 分离 supramolecular multisite statistical w ater treatment extraction separation
  • 相关文献

参考文献38

  • 1Mammen M, Choi S K, Whitesides G M. Angew. Chem. Int Ed. , 1998, 37: 2754.
  • 2James T D, Sandanayake K R A S, Shinkai S. Angew. Chem. Int. Ed., 1996, 35: 1910.
  • 3van Velzen E U T, Engbersen J F J, Reinhoudt D N. J. Am. Chem. Soc., 1994, 116: 3597.
  • 4Huisman B H, Rudkevich D M, van Veggel F C J M, ReinhoudtD N. J. Am. Chem. Soc., 1996, 118: 3523.
  • 5Angelova P, Solel E, Parvari G, Turehanin A, Botoshansky M, Golzhauser A, Keinan E. Langmuir, 2013, 29: 2217.
  • 6Kelly B C, Ikonornou M G, Blair J D, Morin A E, Gobas F A P C. Science, 2007, 317, 236.
  • 7Fisk A T, Norstrom R J, Cymbalisty C D, Muir D. C G. Environ. Toxicol. Chem., 1998, 17: 951.
  • 8Connolly J P, Pedersen C J. Environ. Sci. Technol. , 1988, 22 : 99.
  • 9Beyer J, Jonsson G, Porte C, Krahn M M, Ariese F. Environ. Toxicol. Phar. , 2010, 30: 224.
  • 10Wan D C, Chen F, Geng Q R, Lu H, Willcock H, Liu Q M, Wang F Y K, Zou K D, Jin M, Pu H T, Du J Z. Sci. Rep., 2014, 4: 7296.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部