期刊文献+

一种快速的交通标志检测算法

A Fast Traffic Sign Detection Algorithm
下载PDF
导出
摘要 交通标志识别包括交通标志检测和交通标志分类两个步骤,而决定交通标志识别实时性的关键在于交通标志的检测这一步骤.如何快速检测可能出现的交通标志的区域是实时交通标志识别的关键.本文就目前交通标志检算法普遍存在实时性不足的问题,提出了基于颜色概率模型和BING的快速交通标志检测算法.实验结果表明,本文提出的算法能快速地从待检测图像中筛选出包含交通标志的尽量少的候选窗口,不需要处理传统的滑动窗口方法产生的数万或数十万窗口,进而减少整个交通标志检测的时间,达到实时检测交通标志的要求. In general, traffic recognition consists of two steps: traffic sign detection and traffic sign classification. Traffic sign detection is the key step in a real-time traffic sign recognition system. Addressing the problem that most existing methods cannot be implemented in real time, this paper presents a fast traffic sign detection algorithm based on a color probability model and BING. The experimental results show that the proposed algorithm can select as few candidate windows containing traffic signs as possible from the these detected images quite fast, which avoids handling tens of thousands windows as done in traditional sliding windows methods, hence, the computational cost of the proposed algorithm is reduced so that the real-time detection requirement is achieved.
作者 许华荣 杨怡
出处 《闽南师范大学学报(自然科学版)》 2015年第2期21-25,共5页 Journal of Minnan Normal University:Natural Science
基金 国家自然科学基金项目(61273290) 福建省教育厅项目(JK2011044)
关键词 交通标志检测 实时性 颜色概率模型 traffic signs detection real-time color probability model
  • 相关文献

参考文献15

  • 1A. Mogelmose,M. M. Trivedi, T. B. Moeslund. Vision-based traffic sign detection and analysis for intelligent driver assistancesystems: Perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(4): 1484-1497.
  • 2J. Stallkamp, M. Schlipsing,J. Salmen, et al. The german traffic sign recognition benchmark: a multi -class classificationcompetition[C]/AThe 2011 International Joint Conference on Neural Networks. IEEE, 2011: 1453-1460.
  • 3S. Houben, J. Stallkamp, J. Salmen, et al. Detection of traffic signs in real-world images: The german traffic sign detectionbenchmark[C]//The 2013 International Joint Conference on Neural Networks. IEEE, 2013: 1-8.
  • 4G. Wang, G. Ren, Z. Wu, et al. A robust, coarse-toflne traffic sign detection method[C]/AThe 2013 International Joint Conferenceon Neural Networks. IEEE, 2013: 1-5.
  • 5沙莎,肖学钢.一种多通道融合的交通标志检测方法[J].计算机工程,2009,35(6):202-204. 被引量:10
  • 6何江萍,马彦.基于形状信息的三角形交通标志检测方法[J].计算机工程,2010,36(19):198-199. 被引量:7
  • 7陈维馨,李翠华,汪哲慎.基于颜色和形状的道路交通标志检测[J].厦门大学学报(自然科学版),2007,46(5):635-640. 被引量:18
  • 8黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:40
  • 9王坤明,许忠仁.基于不变矩和神经网络的交通标志识别方法研究[J].计算机应用研究,2004,21(3):254-255. 被引量:19
  • 10Gomez -Moreno.H, Maldonado 一Bascon.S,Gil -Jimenez.P. Goal Evaluation of Segmentation Algorithms for Traffic SignRecognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2010,11(4): 917-930.

二级参考文献44

  • 1黎群辉,张航.基于改进概率神经网络的交通标志图像识别方法[J].系统工程,2006,24(4):97-101. 被引量:14
  • 2朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131. 被引量:34
  • 3朱双东,陆晓峰.道路交通标志识别的研究现状及展望[J].计算机工程与科学,2006,28(12):50-52. 被引量:30
  • 4吴健康.数字图像分析[M].北京:人民邮电出版社,1989.10-25.
  • 5Nicchiotti G, Ottaviani E, Castello P, et al. Automatic Road Sign Detection and Classification from Color Image Sequences[C]// Proceedings of the 7th International Conference on Image Analysis and Processing. Monopoli, Italy: [s. n.], 1993: 623-626.
  • 6Escalera A, Armingol J M, Salchs M A, et al. Road Traffic Sign Detection and Classification[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 848-859.
  • 7Kehtamavaz N, Griwold N C, Kang D S. Stop-sign Recognition Based on Color-shape Processing[J]. Machine Vision and Application, 1993, 6(2/3): 206-208.
  • 8Loy G, Barnes N. Fast Shape-based Road Sign Detection for a Driver Assistance System[C]//Proc. of IEEE International Conference on Intelligent Robots and Systems. Nice, France: IEEE Press, 2004: 70-75.
  • 9Cyganek B L. Road-signs Recognition System for Intelligent Vehicles[C]//Proc. of the 2nd International Workshop on Robot Vision. Auckland, New Zealand: [s. n.], 2008: 219-233.
  • 10Jun-Taek O. Segmentation and Recognition of Traffic Signs Using Shape Information[C]//Proc. of ISVC'05. Lake Tahoe, Nevada, USA: [s. n.], 2005: 519-526.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部