期刊文献+

单位群U(Z[n^(1/2)])的结构 被引量:1

The structure of unit group U(Z[n^(1/2)])
原文传递
导出
摘要 利用整环Z[n^(1/2)]的单位与Pell方程解的关系,给出了同底的非平方自然数n对应的整环Z[n^(1/2)]的单位群及其亚生成元之间的关系. By using the relationship between the unit group of domain Z[n1/2]and the solution of Pell equation,the author considers some structures of unit groups of domain Z[n1/2]under the framework of the quasi-generators,where n has the same-based non-square natural numbers.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第2期5-7,11,共4页 Journal of Yangzhou University:Natural Science Edition
基金 高等学校博士点基金资助项目(20123250110005) 全国大学生科技创新基金资助项目(201311117029Z)
关键词 整环 单位群 PELL方程 domain unit group Pell equation
  • 相关文献

参考文献11

  • 1JANEZ S. Lifting units in clean rings [J]. J Algebra, 2013, 381(1): 200-208.
  • 2HERTWECK M, HCIFERT C R, KIMMERLE W. Finite groups of units and their composition factors in the integral group rings of the groups PSL(2,q) [J]. J Group Theory, 2009, 12(6): 873-882.
  • 3KHAN M, SHARMA R K, SRIVASTAVA J B. The unit group of FS4 [J]. Acta Math Hungar, 2008, 118(1/2) : 105-113.
  • 4KIMMERLE W. Unit groups of integral group rings., old and new [J]. Jahresber Dtsch Math-Ver, 2013, 115(2) : 101-112.
  • 5TANG Gaohua, WEI Yangjiang, LI Yuanlin, et al. Unit groups of group algebras of some small groups [J]. Czech Math J, 2014, 64(1): 149-157.
  • 6GILDEA J. Units of group algebras of non-abelian groups of order 16 and exponent 4 over F2k [J]. Results Math, 2012, 61(3/4): 245-254.
  • 7HALASI Z. On the characters of the unit group of DN-algebras [J]. J Algebra, 2006, 302(2): 678-685.
  • 8屈寅春,杨一超,李立斌.单位元群是素数阶循环群直和的剩余类环[J].扬州大学学报(自然科学版),2010,13(3):1-4. 被引量:3
  • 9DAVIS C, OCCHIPINTI T. Which finite simple groups are unit groups [J]. J Pure Appl Algebra, 2014, 218(4) : 743-744.
  • 10车翔玖.对整环Z(2^(1/2))的单位的讨论[J].吉林师范学院学报,1997(5):62-63. 被引量:1

二级参考文献13

  • 1魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 2苏华东,唐高华.Z_n[i]的素谱和零因子[J].广西师范学院学报(自然科学版),2006,23(4):1-4. 被引量:9
  • 3聂灵沼,丁石孙.代数学引论[M].北京:高等教育出版社,2004.
  • 4KHAN M, SHARMA R K, SRIVASTAVA J B. The unit group of FSi [J]. Acta Math Hung, 2008, 118(1/2) : 105-113.
  • 5PETER V D. Basic subgroups in abelian group rings [J]. Czech Math J, 2002, 52(1): 129-140.
  • 6SHALEV A. The nilpotency class of the unit group of a modular group algebra I[J]. Isr J Math, 1990, 70(3): 257-266.
  • 7ASHWANI K B. On the generators of subgroups of unit groups of group rings [J]. Bull Braz Math Soc, 1990, 20(2) : 87-93.
  • 8HOECHSMANN K, SEHGAL S K, WEISS A. Cyclotomie units and the unit group of an elementary abelian group ring[J]. Arch Math, 1985, 45(1): 5- 7.
  • 9WOLFMANN J. Binary images of cyclic codes over Zn [J]. IEEE Trans Inform Theory, 2001, 47(5): 1773- 1779.
  • 10CALDERBANK A R, SLOANE N J. Modular and p-adic cyclic codes [J]. Des Codes Cyptogr, 1995, 6(1): 21-35.

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部