期刊文献+

基于学习因子自适应改变的粒子群算法研究 被引量:6

The research of PSO based on the adaptive changes of acceleration coefficients
下载PDF
导出
摘要 标准粒子群算法的学习因子是固定值,但是研究发现这种取法却并不合适,会影响到算法的性能.本文通过研究得到以下结论:为了保证粒子群算法搜索到更广阔的空间以及粒子的收敛性,不管是调整单个学习因子还是两个同时调整,学习因子c1对应的函数都应该先凹后凸,而c2对应的函数应该先凸后凹;绝大多数情况下两个因子一起调整会比只调整一个要好;两种调整策略同样都是c1对应的函数先凹后凸、而c2对应的函数先凸后凹的情况时,非对称性调整优于对称性调整. The acceleration coefficients of standard PSO are fixed numbers,but the research showed it is not appropriate because the performance of this algorithm would be destroyed.Three conclusions had been drawn in this paper:To assure the wider search range and the convergence of the particles,whether you changed only one acceleration coefficient or both acceleration coefficients,c1 should begin with concave and end with convex and c2 was conversely;Generally speaking,PSO performed better when changed both acceleration coefficients at the same time than only changed one of them;Non-symmetric adjustment was better than symmetric adjustment when two strategies both were the first circumstance.
出处 《陕西科技大学学报(自然科学版)》 2015年第4期172-177,共6页 Journal of Shaanxi University of Science & Technology
基金 陕西省教育厅专项科研计划项目(14JK1347)
关键词 粒子群算法 学习因子 凹凸性 particle swarm optimization occeleration coefficient convexity
  • 相关文献

参考文献16

  • 1Van Den Bergh F. An analysis of particle swarm Optimi- zers[D]. Pretoria: Department of Computer Science, Uni- versity of Pretoria, 2006.
  • 2张震,潘再平,潘晓弘.基于剪枝策略的骨干粒子群算法[DB/OL] http://www, cnki. net/kcms/detail/21. 1124. TP. 20150325. 1335. 001. html,2015-03-25.
  • 3Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]//Proceeding of Congress on the Evolu- tionary Computation. Washington D C: IEEE, 1999: 1 945-1 950.
  • 4周敏,李太勇.粒子群优化算法中的惯性权值非线性调整策略[J].计算机工程,2011,37(5):204-206. 被引量:24
  • 5陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 6田东平,赵天绪.基于Sigmoid惯性权值的自适应粒子群优化算法[J].计算机应用,2008,28(12):3058-3061. 被引量:17
  • 7Yang Tang,Wang Zidong,Fang Jianan. Feedback learning particle swarm optimization [J]. Appl. Soft Comput, 2011,11:4 713-4 725.
  • 8Geng H T, Huang H, Gao J, et al. A self-guided particle swarm optimization with independent dynamic inertia weights setting on each particle[J]. Applied Mathematics and Information Sciences,2013,7(3):545-552.
  • 9Chatterjee A,Siarry P. Nonlinear inertia variation for dy- namic adaption in particle swarm optimization[J]. Com- puters & Operation Research, 2006,33(3) :859-871.
  • 10毛开富,包广清,徐驰.基于非对称学习因子调节的粒子群优化算法[J].计算机工程,2010,36(19):182-184. 被引量:21

二级参考文献75

共引文献458

同被引文献61

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部