摘要
从行业供应链视角,以钢铁行业和医药流通行业供应链中上市企业市场数据为研究对象,上市公司信用风险大小以KMV模型中的违约距离值代替,利用Apriori算法挖掘上市公司信用风险传染的关联规则。研究结论表明,医药流通行业供应链中企业信用风险传染频率和传染强度均高于钢铁行业供应链中企业;供应链中上下游企业整合以及信用技术引进是影响供应链企业信用风险传染重要影响因素。
From the perspective of the supply chain industry, this paper studies the market data of the listed companies se- lected from the steel industry and the pharmaceutical distribution industry which come from the same supply chain. The credit risk indicators of listed companies are measured by the distance to default calculated through KMV computational method. Besides, Apriori algorithm is used to dig the transmission of credit risk between the listed companies. The result indicates that : compared with the steel industry supply chain, the frequency and intensity of supply chain credit risk conta- gion were higher in pharmaceutical distribution industry supply chain; supply chain integration and information sharing in the supply chain are important influence factors for reducing credit risk contagion between the enterprises in supply chain.
出处
《科技管理研究》
CSSCI
北大核心
2015年第13期211-217,共7页
Science and Technology Management Research
基金
国家自然科学基金资助项目"多项目运作环境下的项目族工作分解结构及其应用研究"(70971036)
国家社科基金后期资助项目"多项目管理方法及其应用研究"(13FGL005)
湖南省软科学项目"多项目资源配置机理及其优化研究"(12YBA061)
关键词
行业供应链
信用风险传染
KMV模型
关联规则
supply chain industry
credit risk contagion
KMV model
Association Rule Algorithm