期刊文献+

认知无线电中的宽频段频谱感知器设计 被引量:1

下载PDF
导出
摘要 无线频谱感知器是认知无线电系统的核心。文章针对认知无线电中的宽频段频谱感知问题,提出了利用谐波滤波器组周期性检测的方案,并给出了基于能量检测的硬件实现框图。理论与仿真分析表明,基于快速傅里叶变换的周期图法不满足一致性估计条件,方差性能很难满足实际应用需求;分段平均周期图法与加窗平均周期图法收敛性好,方差小,但是功率谱密度主瓣较宽,分辨率低;多窗谱估计法具有较小的估计偏差,且其方差性能和频谱分辨率均远远优于周期图法,因而比较适合应用在实际的认知无线电系统中。
作者 刘志鹏
出处 《信息通信》 2015年第6期47-50,共4页 Information & Communications
  • 相关文献

参考文献9

  • 1S.Haykin.Cognitive Radio:Brain-Empowered Wireless Communications.IEEE Journal on Selected Areas in Communications.2005,23(2):201-220.
  • 2刘航,于丹,孔祥维.低信噪比条件下提高认知无线电的频谱感知能力的方法[J].电子与信息学报,2009,31(4):993-996. 被引量:9
  • 3Swami Ananthram,Ghogho Mounir,Cardenas-Juarez Marco.Semi-blind locally optimum detection for spectrum sensing in cognitive radio.2010 IEEE International Conference on Acoustics Speech and Signal Processing,ICASSP 2010:2962-2965.
  • 4Simon Haykin,David J.Thomson,Jeffrey H.Reed.Spectrum Sensing for Cognitive Radio.Proceedings of the IEEE.2009,97(5):849-877.
  • 5Fadel F.Digham,Mohamed-Slim Alouini,Marvin K.Simon.On the Energy Detection of Unknown Signals over Fading Channels.IEEE Transactions on Communications.2007,55(1):21-24.
  • 6虞贵财,罗涛,黄振,乐光新.感知无线电系统中改进的循环频谱检测算法[J].北京邮电大学学报,2009,32(2):89-92. 被引量:7
  • 7钟国辉,赵震,屈代明.基于循环平稳特性的双循环频率频谱感知技术[J].华中科技大学学报(自然科学版),2010,38(7):78-81. 被引量:3
  • 8Sau-Hsuan Wu,Chao-Yuan Yang,D.-H.Tina Huang.Cooperative sensing of wideband cognitive radio:a multiple-hypothesis-testing approach.IEEE Transactions on Vehicular Technology.2010,59(4):1835-1846.
  • 9王海军,粟欣,王京.认知无线电中协作用户数的优化[J].清华大学学报(自然科学版),2010,50(5):777-779. 被引量:5

二级参考文献39

  • 1Mitola Ⅲ J. Cognitive radio: An integrated agent architecture for software defined radio. [Ph.D. dissertation], KTH Royal Institute of Technology Stockholm, Sweden,2000.
  • 2Gardner W A and Spooner C M. Cyclic spectral analysis for signal detection and modulation recognition. MILCOM'88, San Diego, CA, 1988: 419-424.
  • 3Gardner W A. Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Process Magazine, 1991, 8(2): 14-36.
  • 4Kim K, Akbar I A, Bae K K, Um J S, Spooner C M, and Reed J H. Cyclostationary approaches to signal detection and classification in cognitive radio. IEEE DySPAN, Dublin, Ireland, 2007: 212-215.
  • 5Fehske A and Gaeddert J A. A new approach to signal classification using spectral correlation and neural networks. IEEE DySPAN, Baltimore, Maryland, USA, 2005: 144-150.
  • 6He Tao and Zhou Zheng-ou. Modulation classification based on multifractal features. 6th International Conference on ITS Telecommunications Proceedings, Chengdu, China, 2006: 152-155.
  • 7Wu Dan, Gu Xuemai, and Guo Qing. A New Scheme of Automatic Modulation Classification Using Wavelet and WSVM. 2nd International Conference on Mobile Technology, Applications and Systems, Guangzhou, China, 2005, 5pp.
  • 8Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995: 85-90.
  • 9Wu T F, Lin C J, and Weng R C. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 2004, 5(8): 975-1005.
  • 10Ian F A, Lee W Y, Mehmet C V, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey[J]. Computer Networks, 2006(50): 2127-2159.

共引文献19

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部