摘要
研究了当k是正整数时,数列{sinnk}的敛散性,文献[1]给出了{sinn}和{sinn2}发散的证明,但是证明方法复杂,不便阅读.为此,本文进行了两个方面的研究:一方面是运用简单的方法证明了{sinn}和{sinn2}的发散;另一方面证明了一个重要结论,即{sinnk}发散.
When k is a positive integer, the sequence {sinnk} of convergence and divergence of the literature [1] only gives { sinn} and { sinn2} diverge proof, but proof complexity, inconvenience read. In this paper, we studied two aspects: on the one hand is the use of a simple method proof { sinn} and { sinn2 } divergence; On the other hand proved an important conclusion that { sinnk} diverge.
出处
《大学数学》
2015年第3期60-62,共3页
College Mathematics
基金
国家自然科学基金(1107125)
国家级大学生创新训练项目(201490052045)
关键词
数列
敛散性
极限
sequence
convergence and divergence
limit