期刊文献+

基于权值优化与纹理特征的快速人脸分割算法

Fast facial image segmentation algorithm based on optimized weights and texture feature
下载PDF
导出
摘要 针对传统Grab Cut在GMM迭代估计阶段仅单纯地考虑像素点的RGB彩色信息,当前景细节区域与它的周围区域颜色差异较大时容易发生分割错误,以及基于像素的运算导致分割效率不高的问题,提出一种结合权值优化与CS-LBP纹理特征的改进算法。该算法利用多尺度分水岭对图像进行预分割,构建区域邻接图;然后对每个区域进行颜色和纹理特征的提取,通过权值迭代优化算法使区域的数据项权值与周边分块区域的权值相关联,采用自适应参数将纹理约束项引入能量函数,并将改进算法应用于人脸图像分割,有效改善了分割效果。实验结果表明,该算法分割结果更加准确,效率更高。 The stage of estimating the GMM iteratively only considers the pixels' RGB color and the calculation is based on pixels in traditional GrabCut, so it is prone to produce segmentation errors when the details of foreground and its surroundings are different and its efficiency is not high. To improve these problems, this paper proposed an algorithm combining the optimization of weights and CS-LBP texture feature. Firstly, this algorithm applied the multi-scale watershed to pre-segment the original image into regions to construct region adjacency graph. Then it extracted color and texture feature from each region and used the optimized algorithm iteratively to correlate the weight of data item of a region with its surroundings. The energy function added the texture constraint with adaptive parameter and applied the improved algorithm to facial image segmentation. The algorithm improved the segmentation effect efficiently. The experiments show that the proposed method can improve segmenta- tion accuracy and efficiency.
作者 孙巍 郭敏
出处 《计算机应用研究》 CSCD 北大核心 2015年第8期2496-2499,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(10974130) 中央高校基本科研业务费专项资金资助项目(GK201405007)
关键词 GRAB Cut算法 多尺度分水岭 权值优化 CS-LBP 人脸图像分割 GrabCut algorithm multi-scale watershed optimized weights CS-LBP facial image segmentation
  • 相关文献

参考文献14

  • 1Vilas H G, Yogesh V H, Vijander S. An efficient approach for face recognition based on common eigenvalues[J] . Pattern Recognition, 2014, 47(5):1869-1879.
  • 2Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C] //Proc of the 8th IEEE International Conference on Computer Vision. Washington DC:IEEE Computer Society, 2001:105-112.
  • 3Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J] . International Journal of Computer Vision, 2006, 70(2):109-131.
  • 4Schmidt F R, Tppe E, Cremers D. Efficient planar graph cuts with application in computer vision[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2009:351-356.
  • 5Rother C, Kolmogorov V, Blake A. GrabCut interactive foreground extraction using iterated graph cuts[J] . ACM Trans on Graphics, 2004, 23(3):309-314.
  • 6Rother C, Kolmogorov V, Minka T, et al. Cosegmentation of image pairs by histogram matching:incorporating a global constraint into MRFs[C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2006:993-1000.
  • 7Tang M, Gorelick L, Veksler O, et al. GrabCut in one cut[C] //Proc of IEEE International Conference on Computer Vision. Washington DC:IEEE Computer Society, 2013:1769-1776.
  • 8Ding Lei, Yilmaz A. Interactive image segmentation using probabilistic hypergraphs[J] . Pattern Recognition, 2010, 43(5):1863-1873.
  • 9Han Shoudong, Tao Wenbing, Wang Desheng, et al. Image segmentation based on GrabCut framework integrating multiscale nonliner structure tensor[J] . Image Processing, 2009, 18(10):2289-2302.
  • 10Ferrara M, Franco A, Maio D. A multi-classifier approach to face image segmentation for travel documents[J] . Expert Systems with Applications, 2012, 39(9):8452-8466.

二级参考文献9

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2王小鹏,郝重阳,樊养余.基于形态学尺度空间和梯度修正的分水岭分割[J].电子与信息学报,2006,28(3):485-489. 被引量:12
  • 3VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithmbased on immersion simulations[ J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13 ( 6) : 583- 598.
  • 4WANG De-min. Unsupervised video segmentation based on watersheds and temporal tracking[ J] . IEEE Trans on Circuits and Systems for Video Technology, 1998, 8 ( 5) : 539- 546.
  • 5CANNY J. A computational approach to edge detection[ J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8( 6) : 678- 698.
  • 6NAJWA V S. On detecting edges [ J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1986, 8 ( 6) : 699- 714.
  • 7TANCHAROEN D, JITAPUNKUL S. Spatial segmentation based on modified morphological tools [ J] . IEEE Conference In formation Technology, 2001 , 9( 1 ) : 478- 482.
  • 8罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:233
  • 9卢官明.一种计算图象形态梯度的多尺度算法[J].中国图象图形学报(A辑),2001,6(3):214-218. 被引量:50

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部