期刊文献+

基于神经动力学优化的压缩感知信号恢复方法

Neurodynamic optimization method for recovery of compressive sensed signals
下载PDF
导出
摘要 针对稀疏信号的准确和实时恢复问题,提出了一种基于神经动力学优化的压缩感知信号恢复方法。通过引入反馈神经网络(recurrent neural network,RNN)模型求解l1范数最小化优化问题,计算RNN的稳态解以恢复稀疏信号。对不同方法的测试结果表明,提出的方法在恢复稀疏信号时所需的观测点数最少,并且可推广到压缩图像的恢复应用中,获得了更高的信噪比。RNN模型也适合并行实现,通过GPU并行计算获得了超过百倍的加速比。与传统的方法相比,所提出的方法不仅能够更加准确地恢复信号,并具有更强的实时处理能力。 Aiming at the problem of accurate and real-time recovery for sparse signals, this paper developed a neurodynamic optimization method to reconstruct compressive sensed signals. By introducing recurrent neural network (RNN) to solve the l1 norm minimization problem, the proposed method could recover sparse signals by computing stable solution of the RNN. Results of tests for different methods show that the proposed method requires minimum measurement points to recover sparse signal, and can be applied for recovery of compression image to obtain a higher signal to noise ratio. The RNN model is also suitable for parallel1 implementation, and obtains more than 100 times speedup by GPU parallel computing. As compared with the conventional methods, the proposed method can not only recover signals more accurately, but also hold a better real-time processing capability.
作者 熊飞 杨清山
出处 《计算机应用研究》 CSCD 北大核心 2015年第8期2551-2553,2557,共4页 Application Research of Computers
关键词 压缩感知 稀疏信号 神经动力学优化 反馈神经网络 l1范数最小化 compressed sensing sparse signal neurodynamic optimization recurrent neural network l1 norm minimization
  • 相关文献

参考文献14

  • 1Qaisar S, Bilal R M, IQBAL W, et al. Compressive sensing:from theory to applications, a survey[J] . Jouranl of Communications and Networks, 2013, 15(5):443-456.
  • 2尹宏鹏,刘兆栋,柴毅,焦绪国.压缩感知综述[J].控制与决策,2013,28(10):1441-1445. 被引量:48
  • 3Candès E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J] . IEEE Trans on Information Theory, 2006, 52(2):489-509.
  • 4Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J] . SIAM Review, 2001, 43(1):129-159.
  • 5Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularized least squares[J] . IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617.
  • 6Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J] . IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597.
  • 7Yang Zai, Zhang Cishen, Deng Janliang, et al. Orthonormal expansion l1-minimization algorithms for compressed sensing[J] . IEEE Trans on Signal Processing, 2011, 59(12):6285-6290.
  • 8Yang A, Sastry S, Ganesh A, et al. Fast l1-minimization algorithms and an application in robust face recognition:a review[C] //Proc of International Conference on Image Processing. 2010:1849-1852.
  • 9Liu Qingshan, Wang Jun. A recurrent neural network for non-smooth convex programming subject to linear equality and bound constraints[C] //Proc of International Conference on Neural Information Processing. 2006:1004-1013.
  • 10Guo Zhishan, Liu Qingshan, Wang Jun. A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints[J] . IEEE Trans on Neural Networks, 2011, 22(12):1892-1900.

二级参考文献45

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Marple S L. Digital spectral analysis with applications[M]. Englewood Cliffs: Prentice-Hall, 1987: 35-101.
  • 3Candbs E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 4Donoho D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 5Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 6Candbs E. Compressive sampling[C]. Proc of the Int Congress of Mathematicians. Madrid, 2006, 3: 1433-1452.
  • 7Cands E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics, 2006, 6(2): 227-254.
  • 8Cands E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 9Waheed Bajwa, Jarvis Haupt, Akbar Sayeed. Compressive wireless sensing[C]. Proc of the 5th Int Conf on Information Processing in Sensor Networks. New York: Nashville, 2006: 134-142.
  • 10Duarte M F, Davenport M A, Takhar D, et al. Single- pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部