期刊文献+

裂隙岩体不稳定温度场的复合单元算法研究 被引量:2

Composite element algorithm for transient thermal field in fractured rock mass
下载PDF
导出
摘要 基于复合单元法,结合三维热传导-对流方程和"充填模型",提出了裂隙岩体不稳定温度场的复合单元模型。该模型前处理简便快捷,计算网格生成时无需考虑裂隙的存在,网格剖分不受限制,随后利用复合单元前处理程序,依据裂隙的位置和方位将其自动离散在单元内。对常规热传导-对流方程进行自伴随性调整,应用变分原理,推导出裂隙岩体不稳定温度场的复合单元算法,该算法可分别计算出岩块子单元和裂隙的温度值,且可真实反映裂隙中水流与相邻岩块间的热能量交换规律。将复合单元数值模型计算的不稳定温度场结果与相应的实测数据进行对比分析可知,数值计算结果与实测数据基本一致,验证了裂隙岩体不稳定温度场复合单元算法的可靠性与有效性。算例分析表明,裂隙中水流与相邻岩块间有明显的热传导和热对流作用。 Based on the composite element method, we propose a composite element model associated with a three-dimensional heat conduction-convection equation and a "filled model" for the determination of the transient thermal field in fractured rock mass. Although the existence of fractures is not considered during mesh generation, it is explicitly treated in the mapping composite element by means of the composite element pre-processing work program. There is no restriction on the computational mesh generation. A self-adjoint process is made to adjust the heat conduction-convection equation. The composite element algorithm is deduced by applying the variational principle for solving transient thermal field in fractured rock mass. The proposed method is applied to calculate the respective temperature of rock sub-elements and fracture segments, in which it also takes into account the thermal exchange characteristics of the fluid in fracture and the adjacent rock blocks. The obtained numerical results are consistent well with the experimental data. The reliability and validity of the proposed numerical method are verified with the measured results, which show that the thermal conduction and convection and obviously occur between the fluid in fracture and the adjacent rock blocks.
作者 薛娈鸾
出处 《岩土力学》 EI CAS CSCD 北大核心 2015年第7期2088-2094,共7页 Rock and Soil Mechanics
基金 国家自然科学基金项目(No.51209097) 华南理工大学亚热带建筑科学国家重点实验室开放研究项目(No.2013KB27) 中央高校基本科研业务费专项资金资助(No.2014ZZ0022)
关键词 岩体 裂隙 不稳定温度场 复合单元法 rock mass fracture transient thermal field composite element method
  • 相关文献

参考文献18

  • 1DESILVA S J, CHAN C L, CHANDRA A, et al. Boundary element method analysis for the transient conduction-convection in 2-D with spatially variable convective velocity[J]. Applied Mathematical Modelling, 1998, 22(1 -2): 81 - 112.
  • 2SAMARDZIOSKA T, POPOV V. Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media[J]. Advances in Water Resources, 2005, 28(3): 235-255.
  • 3SHAIK A R, RAHMAN S S, TRAN N H, et al. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 2011, 31 (10): 1600- 1606.
  • 4LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658.
  • 5ODA M. An equivalent continuum model for coupled stress and fluid analysis in jointed rock masses[J]. Water Resources Research, 1986, 22(13): 1845- 1856.
  • 6黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,21(1):77-82. 被引量:43
  • 7AHOLA M P, THORAVAL A, CHOWDHURY A H. Distinct element models for the coupled T-H-M processes Theory and implementation[J]. Developments in Geoteehnieal Engineering, 1996, 79:181 - 211.
  • 8ANDERSSON J, DVERSTORP B. Conditional simulation of fluid flow in three-dimensional networks of discrete fractures[J]. Water Resources Research, 1987, 23(10): 1876- 1886.
  • 9BRUEL D. Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: Application to the Rosemanowes hot dry rock reservoir[J] Geothermies, 1995, 24(3): 361-374.
  • 10KOLDITZ O. Modelling flow and heat transfer in fractured rocks: Concept model of a 3-D deterministic fracture network[J]. Geothermics, 1995, 24(3): 451- 470.

二级参考文献28

共引文献75

同被引文献19

  • 1陈胜宏,王鸿儒,熊文林.节理面渗流性质的探讨[J].武汉水利电力学院学报,1989,22(1):53-60. 被引量:20
  • 2吴持恭.水力学[M].北京:高等教育出版社,2008.
  • 3柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,1997,19(2):59-62. 被引量:31
  • 4MIT-led Interdisciplinary Panel.The future of geothermal energy-impact of enhanced geothermal systems(EGS)on the United States in the 21st century[R].Idaho Fall:MIT-led Interdisciplinary Panel,Massachusetts Institute of Technology,2006.
  • 5MUKHOPADHYAY S,TSANG Y W.Uncertainties in coupled thermal–hydrological processes associated with the drift scale test at Yucca Mountain,Nevada[J].Journal of Contaminant Hydrology,2003,62-63:595-612.
  • 6SAMARDZIOSKA T,POPOV V.Numerical comparison of the equivalent continuum,non-homogeneous and dual porosity models for flow and transport in fractured porous media[J].Advances in Water Resources,2005,28:235-255.
  • 7LONG J C S,REMER J S,WILSON C R,et al.Porous media equivalents for networks of discontinuous fractures[J].Water Resources Research,1982,18(3):645-658.
  • 8AHOLA M P,THORAVAL A,CHOWDHURY A H.Distinct element models for the coupled T-H-M processes:Theory and implementation[J].Developments in Geotechnical Engineering,1996,79:181-211.
  • 9ANDERSSON J,DVERSTORP B.Conditional simulation of fluid flow in three-dimensional networks of discrete fractures[J].Water Resources Research,1987,23(10):1876-1886.
  • 10KOLDITZ O.Modelling flow and heat transfer in fractured rocks:Concept model of a 3D deterministic fracture network[J].Geothermics,1995,24(3):451-470.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部