期刊文献+

基于云模型的用户双重聚类推荐算法 被引量:6

A user dual clustering recommendation algorithm based on cloud model
下载PDF
导出
摘要 协同过滤是一种应用广泛的推荐算法,但存在着效率低和数据稀疏等问题。为解决这些问题,提出了一种改进的聚类推荐算法。该算法引用云模型,先从项目属性和用户属性两方面计算云模型期望、熵和超熵,并考虑到评分时间、评分高低和评分习惯等因素的影响,建立用户兴趣模型;接着,采用基于云模型的修正相似度量方法进行用户兴趣相似度比较,并使用K-means算法进行聚类;最后,利用参与预测人数的比例对公共项目进行推荐结果合并。在MovieLens上的实验结果表明,该算法不仅可以解决效率低和数据稀疏等问题,还提高了推荐的准确性。 Collaborative filtering is a widely used recommendation algorithm, but problems such as low efficiency and data sparseness still exist. In order to solve these problems, we present an improved clustering recommendation algorithm. The algorithm introduces a cloud model, in which the expecta- tion, entropy and hyper entropy are calculated according to the item attributes and user attributes di- mensions. To build up a user interest model, the influence of rating time, rating level and rating habits are also taken into account. Then the similarities of user interests are compared by the corrected similari- ty measurement based on cloud model, and the K-means algorithm is adopted to perform clustering. Fi- nally, the recommendation results of the public projects are merged by using the proportion of the par- ticipants who will make predictions. Experiment results on the MovieLens show that the algorithm can not only solve the problem of low efficiency and data sparseness but also improve the accuracy of the rec- ommendation results.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第7期1245-1251,共7页 Computer Engineering & Science
基金 广东省教育部产学研结合项目(2012B091100003 2012B091000058) 广东省专业镇中小微企业服务平台建设项目(2012B040500034)
关键词 协同过滤 云模型 聚类 数据稀疏 collaborative filtering cloud model clustering data sparseness
  • 相关文献

参考文献9

二级参考文献77

共引文献553

同被引文献62

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部