期刊文献+

基于支持向量机的高压断路器机械状态预测算法研究 被引量:28

Mechanical Life Prognosis of High Voltage Circuit Breaker Based on Support Vector Machine
下载PDF
导出
摘要 机械故障是高压断路器运行过程中的主要故障之一,对高压断路器开展机械状态评估与预测,对提高高压开关设备和电网运行可靠性具有重要意义。文中基于支持向量机进行了高压断路器机械状态预测算法的研究。支持向量机是一种统计机器学习算法,以结构风险最小化为训练目标,能够很好地解决过学习、维数灾难、局部最优等传统机器学习算法遇到的问题。在具体的算法实现中,文中利用断路器前几次动作的触头行程和操作线圈电流曲线来预测下一次或者后几次动作数据。利用预测出来的机械动作数据对高压断路器进行故障诊断,可以发现高压断路器潜在的问题,从而达到机械状态预测的目的。此外,文中通过归一化、交叉验证、网格搜索等方法来确定算法参数和提高算法精度。最后,以高压断路器机械寿命试验数据为例测试了该算法,结果表明该算法能够很好地训练并预测机械动作行程曲线和操作线圈电流曲线。 Mechanical fault is one of the main faults occurring during the life cycle of high-voltage circuit breakers (HVCBs). In order to enhance the reliability of HVCBs and the power system, it is important to assess and predict the mechanical condition of HVCBs. In this paper, the mechanical prediction algorithm for HVCBs based on support vector machine (SVM) was studied. SVM is a statistical learning algorithm which minimizes the structural risk for training purposes and can solve the problems of traditional machine learning methods (e.g. over-fitting, dimension disaster, local optimum, et al.). For the implement of algorithm, the historic data of contact travel and coil current were used to predict the future values. In order to predict the mechanical condition, the process of fault diagnosis for HVCBs can be applied. The methods, such as data scale, cross validation and grid search, were adopted to obtain the presetting parameters of algorithm and improve the performance. In the end, the mechanical life experiment data of a HVCB was applied to validate the feasibility of the algorithm. The results showed that the proposed algorithm could predict the mechanical condition of HVCBs successfully.
出处 《高压电器》 CAS CSCD 北大核心 2015年第7期155-159,165,共6页 High Voltage Apparatus
关键词 高压断路器 机械状态 支持向量机 时间序列 网格搜索 high voltage circuit breaker mechanical life support vector machine time series grid search
  • 相关文献

参考文献9

  • 1李东妍,荣命哲,王婷,王小华,吴翊,梁景超.超高压GIS剩余寿命评估方法综述[J].高压电器,2011,47(10):87-92. 被引量:11
  • 2HEISING C R,JANSSEN A,LANZ W,et a1. Summary of CIGRE 13.06 working group world wide reliability data and maintenance cost data on high voltage circuit breakers above 63 kV[C]//Industry Applications Society Annual Meeting.[S.1.]:IEEE, 1994:2226-2234.
  • 3JARDINE A K, LIN Daming,BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance [J]. Mechanical Systems and Signal Processing, 2006,20(7):1483-1510.
  • 4孟光,尤明懿.基于状态监测的设备寿命预测与预防维护规划研究进展[J].振动与冲击,2011,30(8):1-11. 被引量:30
  • 5LI Y, BILLINGTON S,ZHANG C, et al. Adaptive prognos- tics for rolling element bearing condition[J]. Mechanical Systems and Signal Processing, 1999,13(1): 103-113.
  • 6RONG M,WANG Xiaohua,WU Yang, et al. Mechanical condition recognition of medium-voltage vacuum circuit breaker based on mechanism dynamic features simulationand ANN[J]. IEEE Transactions on Power Delivery,2005, 20(3): 1904-1909.
  • 7HSU C W,CHANG C C. A practical guide to support vector classification[D]. Taibei: National Taiwan University, 2010.
  • 8王小华,荣命哲,吴翊,刘定新.高压断路器故障诊断专家系统中快速诊断及新知识获取方法[J].中国电机工程学报,2007,27(3):95-99. 被引量:51
  • 9LI Dongyan, RONG Mingzhe, WANG Ting, et al. A ne1method for mechanical fauh recognition of extra high volt- age circuit breaker[J]. Physics Procedia, 2012(24):397-403.

二级参考文献134

共引文献87

同被引文献286

引证文献28

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部