期刊文献+

5阶WENO有限差分法在界面追踪中的应用 被引量:2

Application of Fifth-Order WENO Finite Difference Method in the Moving-Interface Tracking
下载PDF
导出
摘要 为实现高精度和高分辨率追踪流体运动界面,采用流体体积函数(VOF)法,将VOF函数的二维运输方程转化为一维守恒律方程后,空间导数采用5阶WENO有限差分法离散,时间导数采用3阶Runge-Kutta法离散,数值流通量采用Local Lax-Friedrich通量计算,运动界面采用Youngs界面重构技术重构,从而给出一种5阶高精度和高分辨率的流体运动界面追踪方法.将该方法分别应用于平移、旋转场和剪切流场中经典模型的运动界面追踪,结果表明本文方法可实现流体运动界面高精度和高分辨率的追踪. In order to achieve high-precision and high-resolution tracking fluid moving-interface,the fluid volume function(VOF)method was adopted.The two-dimensional transport equation of VOF function was transformed into a one-dimensional conservation law equation.Its spatial derivative was dispersed with fifth-order WENO finite difference method,its time derivative was dispersed with the third-order Runge-Kutta method,the numerical flux was calculated using the local Lax-Friedrich flux,and the moving-interface was reconstructed using Youngs interface reconstruction technology.Based on the above approaches,a method of fifth-order high precision and high resolution was proposed to track moving-interface with VOF.The method was applied to track the moving-interfaces of classic translation,rotating and shear flow field.The results show that the method can achieve high-precision and high-resolution tracking fluid moving-interface.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第4期341-346,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(51209042 11272057)
关键词 VOF法 WENO有限差分法 运动界面 界面重构 VOF WENO finite difference method moving-interface interface reconstruction
  • 相关文献

参考文献8

  • 1Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981,39(1) :201 - 225.
  • 2Osher S, Sethian J A. Fronts propagating with curvature-dependent speed., algorithms based on Hamilton-Jacobi formulations[J]. Journal of Comput- ational Physics, 1988,79(1):12-49.
  • 3Xu Jianjun, Yang Yinl Lowengrub J. A level-set continuum method for two-phase flows with insoluble surfactant[J]. Journal of Computational Physics, 2012, 231(17) : 5897 - 5909.
  • 4Liu Xudong, Stanley Osher, Chan Tony. Weighted essentially non-oscillatory schemes[J]. Journal of Com- putational Physics, 1994,115(1) :200 - 212.
  • 5郑有山,王成.变截面管道对瓦斯爆炸特性影响的数值模拟[J].北京理工大学学报,2009,29(11):947-949. 被引量:19
  • 6吴吉林,马天宝,郝莉,宁建国.基于Youngs界面技术的混凝土中爆炸三维动力计算[J].北京理工大学学报,2009,29(7):570-573. 被引量:1
  • 7Rudman M. Volume-tracking methods for interfacial flow calculations [ J ]. International Journal for Numerical Methods in Fluids, 1997,24(7) : 671 -691.
  • 8卢长娜,程冰.基于五阶WENO有限差分法的运动界面追踪[J].南京信息工程大学学报(自然科学版),2010,2(4):357-360. 被引量:2

二级参考文献19

  • 1冯其京,何长江,张敏,梁仙红,张树道.欧拉流体力学数值方法中的界面计算(英文)[J].计算力学学报,2004,21(4):412-418. 被引量:5
  • 2Moen I O. The influence of turbulence on flame propagation in obstacle environment[C]//Proceeding of First International Specialist Meeting on Fuel-Air Explosions. Montreal:[s. n. ], 1982:101 - 135.
  • 3Hijertager B H, Fuher K, Parker S J. Flame acceleration of propane-air in a large-scale obstructed tube[J]. Dynamics of Shock Wave, Explosions and Detonations, 1984,94:504- 522.
  • 4Chao J, Kolbe M, Lee J H S. Influence of tube and ob stacle geometry on turbulent flame acceleration and def lagration to detonation transition[D]. Montreal, Cana da: Department of Mechanical Engineering, McGill Uni versity, 1999.
  • 5Wang Cheng, Ma Tianbao, Ye Ting. Propagation mechanism of non-steady gaseous detonation[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2008,9(2) : 157 - 166.
  • 6Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamics equations with application to finitedifference methods[J]. Journal of Computational Physics, 1981,40:202 - 228.
  • 7Jiang Guangshan, Shu Qiwang. Efficient implementation of weighted ENO sehemes[J]. Journal of Computational Physics, 1996,126(1) :202 - 228.
  • 8Ning Jianguo, Wang Cheng, Lu Jie. Explosion characteristics of coal gas under various initial temperatures and pressures[J]. Shock Waves, 2006,15:461 - 472.
  • 9Shen Y M,Ng C O,Zheng Y H.Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k:turbulence modeling[J].Ocean Engineering,2004,31(1):87-95.
  • 10Lorstad D,Fuchs L.High-order surface tension VOF-model for 3D bubble flows with high density ratio[J].Journal of Computational Physics,2004,200(1):153-176.

共引文献19

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部