期刊文献+

压缩感知及其在超声成像中的应用

Compressive Sensing and its Application in Ultrasound Imaging
下载PDF
导出
摘要 如何实时、高效地存储超声成像射频回波线数据是实现超声成像后期调节、参数优化和会诊的关键。本文利用目前信号采样和压缩领域全新的压缩感知理论,结合超声射频回波线数据的相关性和稀疏性,提出基于压缩感知的超声射频回波线数据压缩算法。该算法能大大降低数据的大小,相比于其他算法,不需要通过计算所有分量后再对计算出来的信号进行排序和编码,提高了压缩效率。 How to store the radio frequency echo data of ultrasound image in real-time and high-efficiency is the key problem of post imaging adjustment,parameter optimization and consultation of doctors.A novel compressive sensing based compressed method for ultrasound imaging radio frequency echo line data is proposed.The method takes full use of the correlation and sparsity of the radio frequency line data to achieve high performance.Compare with other compressed method,the compressed data are calculation directly from the projection of raw data without other additional calculation in our method.
出处 《中国医疗器械信息》 2015年第6期15-18,共4页 China Medical Device Information
关键词 压缩感知 超声成像 稀疏表示 数据存储 compressive sensing ultrasound imaging sparse representation data compressed
  • 相关文献

参考文献10

  • 1A. Wchb, Introduction to Biomedical Imaging. John Wiley & Sons, Hoboken, 2003.
  • 2郑君电,杨为理,应启珩.信号与系统-上下册(第二版).北京:高等教育出版社,2000年.
  • 3孙家宝,郭峰林,薛伟,赵克威,张新祥.基于小波变换的时空数据压缩方法[J].武汉工业学院学报,2013,32(3):74-78. 被引量:1
  • 4万建伟,粘永健,苏令华,辛勤.高光谱图像压缩技术研究进展[J].信号处理,2010,26(9):1397-1407. 被引量:15
  • 5Candes E, Tao T. Decoding by linear programming, IEEE Trans, on Information Theory, 51(12):4203-4215, 2005.
  • 6Justin Romberg, Imaging via compressive sampling. IEEE Trans, on Signal Processing, 25(2):14 - 20,2008.
  • 7Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska. Ting Sun, Kevin F. Kelly, Single-Pixel Imaging via Compressive Sampling, I IEEE Trans, on Signal Processing,83-91,2008.
  • 8Richard Baraniuk, Compressive sensing. IEEE Trans, on Signal Processing, 24(4):118-121, 2007.
  • 9Joel Tropp and Anna Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans, on Information Theory, 53(12): 4655-4666, 2007.
  • 10David Donoho and Yaakov Tsaig, Fast solution of ell-1-norm minimization problems when the solution may be sparse. Stanford University Department of Statistics Technical Report 2006-18,2006.

二级参考文献100

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部