期刊文献+

一种面向大规模数据密集计算的缓存方法 被引量:4

A Cache Approach for Large Scale Data-Intensive Computing
下载PDF
导出
摘要 随着高性能计算机逐步应用在大规模数据处理领域,存储系统将成为制约数据处理效率的主要瓶颈.在分析了影响数据密集型计算I/O性能若干关键因素的基础上,提出使用计算结点本地存储构建协作式非易失缓存、以分布式存储架构加速集中式存储架构的方法.该方法基于应用层协同使用分布化的本地存储资源,使用非易失存储介质构成大缓存空间,存放大规模数据分析的中间过程结果,以此实现高缓存命中率,并利用并发度约束控制等手段避免I/O竞争,充分利用本地存储的特定性能优势保证缓存加速效果,从而有效地提高了大规模数据处理过程的I/O效率.基于多平台多种I/O模式的测试结果证实了该方法的有效性,聚合I/O带宽具有高扩展性,典型数据密集应用的整体性能最大可提升6倍. With HPC systems widely used in today's modern science computing,more data-intensive applications are generating and analyzing the increasing scale of datasets,which makes HPC storage system facing new challenges.By comparing the different storage architectures with the corresponding approaches of file system,a novel cache approach,named DDCache,is proposed to improve the efficiency of data-intensive computing.DDCache leverages the distributed storage architecture as performance booster for centralized storage architecture by fully exploiting the potential benefits of node-local storage distributed across the system.In order to supply much larger cache volume than volatile memory cache,DDCache aggregates the node-local disks as huge non-volatile cooperative cache.Then high cache hit ratio is achieved through keeping intermediate data in the DDCache as long as possible during overall process of applications.To make the node-local storage efficient enough to act as data cache,locality aware data layout is used to make cached data close to compute tasks and evenly distributed.Furthermore,concurrency control is introduced to throttle I/O requests flowing into or out of DDCache and regain the special advantage of node-local storage.Evaluations on the typical HPC platforms verify the effectiveness of DDCache.Scalable I/O bandwidth is achieved on the well-known HPC scenario of checkpoint/restart and the overall performance of typical data-intensive application is improved up to 6times.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第7期1522-1530,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61120106005) 国家"八六三"高技术研究发展计划基金项目(2012AA01A301)
关键词 数据密集计算 缓存 本地存储 共享存储 地震数据处理 data-intensive computing cache local storage shared storage seismic data processing
  • 相关文献

参考文献23

  • 1Raicu I, Foster I, Zhao Y, et al. Towards data intensive many-task computing [C] //Proc of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies. New York.. ACM, 2012:28-73.
  • 2Lang S, Carns P, Latham R, et al. I/O performance challenges at leadership scale [C]//Proc of the Conf on High Performance Computing Networking, Storage and Analysis, SC'09. New York: ACM, 2009:1-12.
  • 3Strande S M, Cicotti P, Sinkovits R S, et al. Gordon: Design, performance, and experiences deploying and supporting a data intensive supercomputer [C] //Proc of the 1st Conf on the Extreme Science and Engineering Discovery Environment. New York: ACM, 2012: 1-8.
  • 4Dong X, Xie Y, Muralimanohar N, et al. Hybrid checkpointing using emerging nonvolatile memories for future exascale systems [J]. ACM Trans on Architecture and Code Optimization (TACO), 2011, 8(2) : 1-29.
  • 5Xu J, Sun B, Si C. The survey of cache management in the shared storage environment [C] //Proc of 2012 Int Conf of Internet Technology and Secured Transaction. Piscataway, NJ: IEEE, 2012:139-142.
  • 6Dahlin M, Wang R, Anderson T, et al. Cooperative caching: Using remote client memory to improve file system performance [C] //Proc of the ist Symp on Operating Systems Design and Implementation. Berkeley, CA: USENIX Association, 1994:267-280.
  • 7牛新征,佘堃,秦科,周明天.移动P2P网络的协作缓存优化策略[J].计算机研究与发展,2008,45(4):656-665. 被引量:15
  • 8Yang Q, Hu Y. DCD-disk caching disk: A new approach for boosting I/O performance [C] //Proc of the 23rd Annual Int Symp on Computer Architecture. New York: ACM, 19961 :169-178.
  • 9Koller R, Marmol L, Rangaswami R, et al. Write policies for host-side flash caches [C] //Proc of the llth USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2013 : 45-58.
  • 10Byan S, Lentini J, Madan A, et al. Mercury: Host-side flash caching for the data center [C] //Proc of the 28th Syrup on Mass Storage Systems and Technologies (MSST 2012). New York, ACM, 2012:1-12.

二级参考文献41

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2张冬冬,李建中,王伟平,郭龙江.数据流历史数据的存储与聚集查询处理算法[J].软件学报,2005,16(12):2089-2098. 被引量:17
  • 3郑相全,郭伟.双向路径重选的自组网负载均衡路由协议[J].计算机研究与发展,2006,43(2):218-223. 被引量:4
  • 4Cao Pei,Proc ’95 ACMSIGMETRICS,1995年,188页
  • 5E.N. Elnozahy, D. B. Johnson. A survey of rollback-recovery protocols in message passing systems. School of Computer Science, Carnegie Mellon University, Tech Rep: CMU-CS-96-181, 1996
  • 6Pierre Lemarinier, Aurelien Bouteiller. Improved message logging versus improved coordinated checkpointing for fault tolerant MPI.IEEE Int'l Conf. Cluster Computing (Cluster 2003), Hong Kong, 2003
  • 7Chandy K M, Lamport L. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Computer Systems, 1985, 3(1): 63~75
  • 8谢旻 邢座程.NICHAL通信软件接口设计与实现[J].计算机研究与发展,2002,39:189-203.
  • 9Charu Aggarwal, et al.Caching on the World Wide Web[J].IEEE Trans on Knowledge and Data Engineering, 1999, 11 (1): 94-107
  • 10Chi-Yin Chow, Hong Va Leong, Alvin Chan. Peer-to peer cooperative caching in mobile environments [ C]. The 24th Int'l Conf on Distributed Computing Systems Workshops (ICDCSW' 04), Hachioji, Japan, 2004

共引文献49

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部