期刊文献+

基于目标分块多特征核稀疏表示的视觉跟踪 被引量:7

Robust Fragments-Based Tracking with Multi-Feature Joint Kernel Sparse Representation
下载PDF
导出
摘要 大多数现有的基于稀疏表示的跟踪器仅采用单个目标特征来描述感兴趣的目标,因而在处理各种复杂视频时不可避免会出现跟踪不稳定的情况.针对这个问题,提出一种基于多特征联合稀疏表示的粒子滤波跟踪算法.该算法的主要思想是对随时间不断更新的字典模板和抽样粒子的局部块依据其位置进行分类,用字典中所有类别块对抽样粒子的局部块进行稀疏表示,而仅用与字典中具有相同类别的局部块及表示系数进行重构,根据重构误差构建似然函数以确定最佳粒子(候选目标),实现对目标的精确跟踪.该方法不仅实现了局部块的结构稀疏性,而且充分考虑了粒子之间的依赖关系,提高了跟踪精度.将算法进一步推广到采用基于核的多种特征描述,经混合范数约束并利用KAPG(kernelizable accelerated proximal gradient)方法求解联合特征的稀疏系数.定性和定量的实验结果均表明该算法在目标发生遮挡、旋转、尺度变化、快速运动、光照变化等各种复杂情况下,依然可以准确地跟踪目标. Most existing sparse representation based trackers only use a single feature to describe the objects of interest and tend to be unstable when processing challenging videos.To address this issue,we propose a particle filter tracker based on multiple feature joint sparse representation.The main idea of our algorithm is to partition each particle region into multiple overlapped image fragments.Eevery local fragment of candidates is sparsely represented as a linear combination of all the atoms of dictionary template that is updated dynamically and is merely reconstructed by the local fragments of dictionary template located at the same position.The weights of particles are determined by their reconstruction errors to realize the particle filter tracking.Our method simultaneously enforces the structural sparsity and considers the interactions among particles by using mixed norms regularization.We further extend the sparse representation module of our tracker to a multiple kernel joint sparse representation module which is efficiently solved by using a kernelizable accelerated proximal gradient(KAPG) method.Both qualitative and quantitative evaluations demonstrate that the proposed algorithm is competitive to the state-of-the-art trackers on challenging benchmark video sequences with occlusion,rotation,shifting and illumination changes.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第7期1692-1704,共13页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61203273) 江苏省自然科学基金项目(BK20141004) 江苏省普通高校自然科学研究项目(11KJB510009) 江苏省信息与通信工程优势学科项目
关键词 视觉跟踪 核稀疏 多特征联合 粒子滤波 重叠分块 visual tracking kernel sparse representation multi-feature association particle filter overlapped fragment
  • 相关文献

参考文献36

  • 1张凤军,赵岭,安国成,王宏安,戴国忠.一种尺度自适应的Mean Shift跟踪算法[J].计算机研究与发展,2014,51(1):215-224. 被引量:15
  • 2Mei Xue, Ling Haibin. Robust visual tracking using L1 minimization [C] //Proc of lnt Conf on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2009:1436-1433.
  • 3Mei Xue, Ling Haibin. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259-2272.
  • 4Liu Baiyang, Yang Lin, Huang Junzhou, et al. Robust and fast collaborative tracking with two stage sparse optimization [C] //Proc of European Conf on Computer Vision. Berlin: Springer, 2010:624-637.
  • 5Liu Baiyang, Huang Junzhou, Yang Lin, et al. Robust visual tracking with local sparse appearance model and selection [C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1-8.
  • 6唐峥远,赵佳佳,杨杰,刘尔琦,周越.基于稀疏表示模型的红外目标跟踪算法[J].红外与激光工程,2012,41(5):1389-1395. 被引量:16
  • 7徐如意,陈靓影.稀疏表示的Lucas-Kanade目标跟踪[J].中国图象图形学报,2013,18(3):283-289. 被引量:3
  • 8Mei Xue, Ling Haibin, Wu Yi, et al. Minimum error bounded efficient Ⅱ tracker with occlusion detection [C] // Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1257-1264.
  • 9Li Hanxi, Shen Chunhua, Shi Qinfeng. Real-time visual tracking with compressing sensing [C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1305-1312.
  • 10Bao Chenglong, Wu Yi, Ling Haibin, et al. Real time robust 11 tracker using accelerated proximal gradient approach [C] // Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2012:1830-1837.

二级参考文献32

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 3李龙,李俊山,叶霞.基于Mean Shift算法的运动平台下红外目标跟踪[J].红外与激光工程,2007,36(2):229-232. 被引量:13
  • 4凌建国,刘尔琦,梁海燕,杨杰.基于正则化观测矢量的H无穷粒子滤波红外目标跟踪方法[J].红外与激光工程,2007,36(4):534-538. 被引量:6
  • 5Yilmaz A, Javed O, Shah M. Object tracking: a survey [J]. Acm Computing Surveys, 2006, 38 (4) : 13 ( 1-45 ).
  • 6Sun L, Liu G. Visual object tracking based on combination of local description and global representation [ J]. IEEE Transac- tions on Cireuits and Systems for Video Technology, 201i, 21 (4) :408420.
  • 7Li M, Zhang Z, Huang K, et al. Robust visual tracking based on simplified biologically inspired features [ C ] //Proceedings of the 16th IEEE International Conference on hnage Processing. Cairo: IEEE, 2009: 4113-4116.
  • 8Chin S, Seng K, Ang L. Lips contour detection and tracking using watershed region-based active contour model and modified H∞ [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(6) : 869-874.
  • 9Jiang N, Liu W,Wu Y. Learning adaptive metric for robust visual tracking [ J]. IEEE Transactions on Image Processing, 2011, 20(8) : 2288-2300.
  • 10Matthews L, Ishikawa T, Baker S. The template update problem [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6) : 810-815.

共引文献31

同被引文献89

  • 1刘威,赵文杰,李成,徐忠林,李婷.粒子滤波理论框架及在目标跟踪中的应用[J].自动化与仪器仪表,2016(3):190-191. 被引量:2
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4万莉,刘焰春,皮亦鸣.EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术,2007,5(1):13-16. 被引量:40
  • 5Vatavu A, Danescu R, Nedevschi S. Stereovision based multiple object tracking in traffic scenarios using free-form obstacle delim- iters and particle filters [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 ( 1 ) : 498-511. [ DOI: 10. 1109/TITS. 2014. 236i248 ].
  • 6Khan Z H, Gu I Y H. Nonlinear Dynamic model for visual object tracking on Grassmann Manifolds with partial occlusion handling [ J]. IEEE Transactions on Cybernetics, 2013, 43 (6): 2005- 2019. [DOI: 10. ll09/TSMCB. 2013. 2237900].
  • 7Khatoonabadi S H, Bajic I V. Video object tracking in the com- pressed domain using spatio-temporal Markov random fields [ J ]. IEEE Transactions on Image Processing, 2013, 22 ( 1 ) : 300- 313. [DOI : 10.1109/TIP. 2012. 2214049 ].
  • 8Wang Q, Chen F, Xu W L, et al. Object tracking via partial least squares analysis[ J ]. IEEE Transactions on Image Process- ing, 2012, 21 (10) : 4454-4465. [DOI: 10. ll09/TIP. 2012. 2205700].
  • 9Cavallaro A, Steiger O, Ebrahimi T. Tracking video objects in cluttered background [ J ]. IEEE Transactions on Circuits Systems fur Video Teehnology, 2005, 15 (4) : 575-584. [DOI: 10. 1109/TCSVT. 2005.8n.n.n.n.7 ].
  • 10Baker S, Matthews I. Lueas-kanade 20 years on: a unifying framework[-J]. International Journal of Computer Vision, 2004, 56(3) : 221-255. [-DOI: 10.1023/B:VISI.0000011205.11775. fd].

引证文献7

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部