期刊文献+

饱和非线性切换系统的L_2-增益分析与设计 被引量:1

L_2-gain Analysis and Design for Nonlinear Switched Systems Subject to Actuator Saturation
下载PDF
导出
摘要 基于线性矩阵不等式和干扰抑制理论,利用多李雅普诺夫函数方法研究了一类具有执行器饱和的非线性切换系统的L2-增益分析及控制综合问题。首先,当假设控制器事先给定时,给出了保证闭环系统在外部扰动作用下状态轨迹有界的充分条件。然后根据这一条件,将估计容许干扰能力的问题转化为一个受限优化问题。然后,在容许干扰集合内,对系统的受限L2-增益进行分析。通过解一个受限优化问题估计了受限L2-增益的上界。进一步,当控制器增益矩阵为设计变量时,这些优化问题可方便地应用于控制器设计问题之中。所有结果都可通过解带有线性矩阵不等式约束的凸优化问题获得。 By utilizing the multiple Lyapunov function method, the analysis and control of L2-gain is studied for a class of uncertain switched linear systems with saturating actuators based on LMIs. Firstly, when controllers are pre-given, a sufficient condition is established, which guarantees that the trajectories of the system with the L2 disturbances are bounded. According to this condition, the problem of estimating disturbance tolerance capability is formulated as a constrained optimization problem. Then, the restricted L2-gain property is analyzed over the set of tolerable disturbances. An upper bound on the restricted L2-gain is estimated by solving a constrained optimization problem. Furthermore, when controller gain matrices are design variables, these optimization problems can be applied to the controller design. All results are presented by a LMIs optimization-based approach.
出处 《控制工程》 CSCD 北大核心 2015年第4期668-673,共6页 Control Engineering of China
基金 国家自然科学基金青年科学基金(51305192) 辽宁省教育厅科研项目(L2014159)
关键词 饱和 切换系统 多LYAPUNOV函数 L2-增益 控制器设计 Actuator saturation, switched system multiple Lyapunov function L2-gain controller design
  • 相关文献

参考文献13

  • 1Liberzon D. Switching in systems and control[M]. Birkhauscr, Boston, 2003.
  • 2Zhao J, Dimirovski G-M. Quadratic stability of a class of switched nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004, 49(4): 574-578.
  • 3Branicky M-S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.
  • 4Cheng D Z, Guo L, Huang J. On quadratic Lyapunov functions[J]. IEEE Transactions on Automatic Control, 2003, 48(5): 885-890.
  • 5Wang L, Shao C. Exponential stabilisation for time-varying delay system with actuator faults: an average dwell time method[J]. International Journal of Systems Science, 2010, 41 [4]: 435-445.
  • 6Zhao J, Hill D-J. On stability, and L2-gain and I-Lo control for switched systems[J]. Automatics, 2008, 44(5): 1220-1232.
  • 7Zhai G, Hu B, Yasuda K, Michel A-N. Disturbance attenuation properties of time-controlled switched systems[J]. Journal of the Franklin Institute, 2001, 338(7): 765-779.
  • 8Sun X, Zhao J, Hill D-J. Stability and L2-gain analysis for switched delay systems: a delay-dependent method[J]. Automatica, 2006, 42(10): 1769-1774.
  • 9Gomes da Silva Jr J M, Lescher F, Eckhard D. Design of time-varying controllers for discrete time linear systems with input saturation[J]. IET Control Theory and Applications, 2007, 1(1): 155-162. H.
  • 10u T, Lin Z, Chen B-M. Analysis and design for discrete-time linear systems subject to actuator Saturation[J]. Systems & Control Letters, 2002, 45(2): 97-112.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部