期刊文献+

多源数据的面向对象国际河流土地覆被分类研究 被引量:10

Object-oriented Landcover Classification of Multi-source Remote Sensing Data in International Trans-boundary River
原文传递
导出
摘要 作为横跨3个国家(尼泊尔、印度、中国)的国际跨界河流——柯西河流域,地形高差巨大,土地覆被结构组成复杂,进行土地覆被的自动分类研究具有典型意义。基于面向对象方法多源遥感数据、训练规则、丰富的细节信息为复杂土地覆被自动分类研究提供了可能。选择合适的影像分割特征和最优分割尺度,按照数据挖掘中的规则顺序逐步进行各个土地覆被的提取。总体精度说明分类结果与野外点相一致的概率能达到90.05%,说明国际跨界河流土地覆被分类方法是可行的,分类结果是准确、可信的。 Land cover classification is not easy for its inner complexity resulting from huge terrain elevation in Kosi River as international trans-boundary river, it has possible to classification difficulties flowing through three countries. The emergency of multi-source remote sensing images and training algorithm make it possible to classify the land cover for its ample details based on object-oriented method. The paper is about land cover classification method selecting feature and optimal scale of segmentation, the innovation of this method lies in selection of proper scale parameter resulting from proper image data and certain classification order. The total accuracy has highly 90.05% compared with object oriented classification result and actual sampling point, which is a feasible method, and the classification results are more accurate.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第7期943-949,共7页 Geomatics and Information Science of Wuhan University
基金 中国科学院重点部署资助项目(KZZD-EW-08-01) "一三五"方向性资助项目(sds-135-1205-03) 中国科学院战略性先导科技专项(B类)资助项目(XDB03030507) 国家自然科学基金资助项目(41301094) 国土资源部地学空间信息技术重点实验室开放研究基金资助项目(KLGSTT2014-06)~~
关键词 面向对象分类 国际跨界河流 多源遥感数据 分割尺度 object-oriented classification international trans-boundary river multi-source remotesensing data segmentation scale
  • 相关文献

参考文献13

  • 1李志斐.跨国界河流问题与中国周边关系[J].学术探索,2011(1):27-33. 被引量:13
  • 2陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 3苏伟,李京,陈云浩,张锦水,胡德勇,刘翠敏.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007,11(4):521-530. 被引量:113
  • 4孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学报,2002,18(2):160-164. 被引量:78
  • 5BlaschkE T, Lang S, Lorup E, et al. Object-orien- ted Image Processing in an Integrated GIS /Remote Sensing Environment and Perspectives for Environ- mental Applications[C]. Environmental Information for Panning, Politics and the Public Metropolis Ver- lag, Marburg, 2000.
  • 6Mauro C, Eufemia T. Accuracy Assessment of Per- field ClassificationIntegrating very Fine Spatial Res- olution Satellite Imagery with Topographic Data[J]. Journal of Geospatial Engineering, 2001, 3 (2) : 127-134.
  • 7Benz U C, Hofmann P, Illhauck W G, et al. Multi- resolution, Object-oriented Fuzzy Analysis Is of Re- mote Sensing Data for GIS Ready Information[J]. ISPRS Journal of Photogramrnetry and Remote Sensing, 2004, 58:239-258.
  • 8Lobo A, Chic O, Casterad A. Classification of Mediterranean Crops with Multi-sensor Data: Per- pixel Versus Per-object Statistics and Image Seg- mentation [ J ]. International Journal of Remote Sensing, 1996, 17:2 358- 2 400.
  • 9Baatz M, Schape A. Object-Oriented and Multi- Scale Image Analysis in Semantic Networks[C]. The 2nd International Symposium on Operationali- zation of Remote Sensing,Ensehede, 1999.
  • 10Baatz M, Schape A. Multi-resolution Segmenta tion: An Optimization Approach for High Quality MuhFscale Image Segmentation[C]. Proceedings of AGIT'00, Heidelberg, Germany, 2000.

二级参考文献77

共引文献516

同被引文献160

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部