期刊文献+

基于多源亮度温度的城市典型植被分类研究 被引量:3

Studies of Typical Urban Vegetation Classification Based on Brightness Temperature from Multiple Sources
原文传递
导出
摘要 城市植被作为城市生态系统的重要组成部分,发挥着巨大的生态效益,合理地对城市植被进行分类有利于城市建设和规划。通过对长春市典型植被分类研究发现,观测时间、探测角度、波段是影响植被亮度温度的主要因素。结果显示:在不同时间段测得的植被的亮度温度差异明显,可很好地区分不同植被,尤其是在中午最有利于4种植被类型的识别;不同探测角度下测得的各种植被的亮度温度,差异也很明显,可达到区分城市典型植被的效果,尤其是在0°探测角度下获得的亮度温度最有利于植被的分类;但同种植被在4个通道的亮度温度只有细微差别,所以利用不同探测波段得到的亮度温度对植被进行区分较难实现。该研究可为植被类型的识别和分类提供重要依据。 As an important part of the urban ecosystem, urban vegetation creats huge ecological benefit, so reasonable classification of urban vegetation is in favor of urban construction and planning. Based on the typical vegetation classification of Changchun, it is found that the observation time, detection angle and band axe the main factors affecting the brightness temperature of vegetation. The result shows that the brightness temperature of vegetations measured in different time periods is significantly different, so it can distinguish among different vegetations easily, especially at noon, it is the most conducive to identify the four vegetation types. The brightness temperature measured under different detection angles is also evidently different, and it can also achieve the effect of distinguishing among typical vegetations, especially the brightness temperature obtained under the 0~ detection angle is the most favorable to the vegetation classification; but there is only subtle difference between brightness temperature of four channels, the brightness temperature obtained in different band ranges is difficult to distinguish among typical vegetations. The results can be used to provide important basis for the identification and classification of vegetation types.
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第7期261-266,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41271350 40971190 40771153) 国家级大学生创新创业训练计划(201210200091)
关键词 遥感 植被分类 热辐射 亮度温度 remote sensing vegetation classification thermal radiation brightness temperature
  • 相关文献

参考文献17

二级参考文献135

共引文献126

同被引文献38

  • 1陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007,11(2):221-227. 被引量:78
  • 2国家标准化技术委员会.海面溢油鉴别系统规范GB/T21247-2007[M].北京:中国标准出版社.2007.
  • 3Lu Y, Li X, Tian Q, et al. Progress in marine oil spill optical remote sensing: detected targets, spectral response characteristics, and theories [J]. Marine Geodesy, 2013, 36(3): 334-346.
  • 4M Coeoccioni, L Corucei, A Masini, et al. SVME: An ensemble of support vector machines for detecting oil spills from full resolution MODIS images[J]. Ocean Dynamics, 2012, 62(3): 449-467.
  • 5H Srivastava, T P Singh. Assessment and development of algorithms to detection of oil spills using MODIS data[J]. Journal of the Indian Society of Remote Sensing, 2010, 38(1): 161-167.
  • 6J D Kessler, D L Valentine, M C Redmond, et al. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico[J]. Science, 2011, 331(6015): 312-315.
  • 7水上溢油快速鉴别规程JT,T862-2013[S].北京:中国标准出版社,2013.
  • 8M Lennon, S Babichenko, N Thomas, et al. Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence[J]. Earsel Eproceedings, 2006, 5(1): 120-128.
  • 9M N Jha. Development of Laser Fluorosensor Data Processing System and GIS Tools for Oil Spill Response[D]. Calary: University of Calgary, 2009.
  • 10F R Bach, M I Jordan. Kernel independent component analysis[J]. The Journal of Machine Learning Research Archive, 2003, 3(3): 1- 48.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部