期刊文献+

非局部均值去噪和LMD综合的滚动轴承故障诊断 被引量:5

Fault Diagnosis to Rolling Bearing by Integration of Nonlocal Means De-noising and LMD
下载PDF
导出
摘要 局域均值分解(Local Means decomposition,LMD)是一种分解效果明显的时频分析方法,在故障诊断中应用广泛。但噪声对其分解有较大影响。为克服噪声的干扰,提出了一种能够应用于轴承信号处理,由非局部均值去噪算法和LMD相结合的新方法,该方法首先采用NLM对信号进行降噪预处理,然后以去噪信号做为输入进行LMD分解,对分解产生的PF分量与降噪信号做相关度分析,甄选PF分量,然后对有用PF分量进行包络谱分析。并将该方法应用在故障滚动轴承信号的特征提取上,结果表明该方法能有效的提取滚动轴承的故障特征,实现滚动轴承的故障诊断。 Local mean decomposition (LMD) is an effective time-frequency analysis method, which is widely used for fault diag- nosis. However it is very sensitive to noise in decomposition. In order to overcome the interference of the noise, a new method for rolling bearing signals processing integrated by nonlocal means (NLM) and LMD was proposed. Firstly using NLM for signal denoising in pre- processing by this method, then applying LMD to denoise signals as inputs, and correlation was analyzed for PF components generated from decomposing and denoised signals to choice the PF components. Afterwards, envelope spectrum analysis was applied on useful PF components. And the method was applied on rolling bearing fault diagnosis of characteristic extraction. The results show that the method can effectively extract fault characteristic of rolling bearing, and realizes its fault diagnosis.
出处 《机床与液压》 北大核心 2015年第13期172-176,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51175387)
关键词 非局部均值 LMD 滚动轴承 故障诊断 Nonlocal means LMD Rolling bearing Fauh diagnosis
  • 相关文献

参考文献11

二级参考文献40

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2许飞云,贾民平,钟秉,林黄仁.旋转机械振动故障诊断的一种模糊神经网络方法研究[J].振动工程学报,1996,9(3):213-219. 被引量:20
  • 3朱继梅.小波变换及其工程应用(连载)[J].振动与冲击,1996,15(2):94-100. 被引量:14
  • 4Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17 (4): 787-804.
  • 5Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing[J]. 2002, 16(2-3): 447-457.
  • 6Cohen L. Time-frequency distribution-a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 7Classen T, Mecklenbrauker W. The aliasing problem in diserete-time Wigner distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(5): 1 067-1 072.
  • 8Lee Joon-Hyun, Kim J, Kim Han-Jun. Development of enhanced Wigner-Ville distribution function [J]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367-398.
  • 9Mallat S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans. P. A. M. I., 1989, 11(7):674-689.
  • 10Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.

共引文献490

同被引文献47

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部