期刊文献+

基于模糊回归分析的投资组合选择模型 被引量:7

Portfolio selection model based on fuzzy regression analysis
原文传递
导出
摘要 近年来,在存在模糊性的金融市场中如何进行有效的投资组合管理吸引了学者们的关注,本文利用模糊线性回归对不同市场上长度不一致的股票数据进行了刻画和分析,并在改进的收益和协方差矩阵基础上构建了投资组合选择模型.算例结果表明,在股票数据长度不一致时,基于模糊回归分析的投资组合选择模型比截断数据的投资组合模型以及基于普通最小二乘回归的投资组合模型有更好的表现. In recent years, how to achieve an efficient portfolio in the financial market with fuzziness has attracted attention of scholars. In this paper, we use fuzzy linear regression to analyze series with different lengths, and build a portfolio selection model based on the improved expected return and covariance matrix. Numerical results show that for the series with different lengths, the portfolio selection model based on fuzzy regression performs better than both of the model based on truncated data and the model based on ordinary least squares regression.
作者 柏林 房勇
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第7期1770-1776,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71271201 71431008)
关键词 模糊线性回归 投资组合选择 三角模糊数 长短数据 fuzzy linear regression portfolio selection triangular fuzzy numbers series with different lengths
  • 相关文献

参考文献19

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
  • 2Markowitz H. Portfolio selection: Efficient diversification of investments[M]. New York: Wiley, 1959.
  • 3Markowitz H. Mean-variance analysis in portfolio choice and capital market[M]. New York: Basil Blackwell, 1987.
  • 4Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8: 338-353.
  • 5Bellman R, Zadeh L A. Decision making in a fuzzy environment[J]. Management Science, 1970, 16: 141-164.
  • 6Tanaka H. Fuzzy data analysis by possibilistic linear models[J]. Fuzzy Sets and Systems, 1987, 24(3): 363-375.
  • 7Ye J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets[J]. Applied Mathematical Modelling, 2010, 34(12): 3864-3870.
  • 8Ye J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment[J]. European Journal of Operational Research, 2010, 205(1): 202-204.
  • 9Merigó J M, Casanovas M. Fuzzy generalized hybrid aggregation operators and its application in fuzzy decision making[J]. International Journal of Fuzzy Systems, 2010, 12(1): 15-24.
  • 10Taheri S M. Fuzzy linear regression based on least absolute deviations[J]. Iranian Journal of Fuzzy Systems, 2012, 9(1): 121-140.

二级参考文献47

  • 1WANGShouyang,YULean,K.K.LAI.CRUDE OIL PRICE FORECASTING WITH TEI@I METHODOLOGY[J].Journal of Systems Science & Complexity,2005,18(2):145-166. 被引量:73
  • 2Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 3Li H X, Philip Chen C L, Huang H P. Fuzzy Neural Intelligent Systems[M]. Boca Raton: CRC Press, 2001,
  • 4Dubois D, Prade H. Fuzzy Sets and Systems-Theory and Applications[M]. New York: Academic Press, 1980.
  • 5Allahviranloo T, Ahmady E, Ahmady N, et al. Block Jacobi two-stage method with Gauss-Sidel inner iterations for fuzzy system of linear equations[J]. Applied Mathematics and Computation, 2006, 175: 1217-1228.
  • 6Allahviranloo T. Numerical methods for fuzzy system of linear equations[J]. Applied Mathematics and Computation, 2004, 155: 493-502.
  • 7Dehghan M, Hashemi B, Ghatee M. Computational methods for solving fully fuzzy linear system [J]. Applied Mathematics and Computation, 2006, 179: 328-343.
  • 8Abbasbandy S, Jafaxian A. Steepest decent method for system of fuzzy linear equations[J]. Applied Mathematics and Computation, 2006, 175: 823-833.
  • 9Diamond P, Kloeden P. Metric Space of Fuzzy Set: Theory and Applications[M]. Singapore: Word Scientific, 1994.
  • 10Holland J H. Genetic algorithms and the optimal allocations of trials[J]. SIAMJ of Computing, 1973, 2: 8-105.

共引文献15

同被引文献52

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部