期刊文献+

非凸函数束方法模型构造及其对偶问题

Construction of Model of the Bundle Method for Nonconvex Functions and Its Dual Problem
下载PDF
导出
摘要 对于非光滑凸优化问题,迫近束方法展示出较高的有效性,我们试图通过改变相应的参数将其推广至非凸非精确优化问题中.我们给出求解一类已知目标函数近似值的非凸非光滑优化问题的迫近束方法,利用函数的近似信息构造一种切平面模型,给出的参数选取方式不仅可以保证线性化误差非负,还可以通过求解惩罚子问题得到下一个迭代点.此外,我们还研究了惩罚子问题的对偶问题,讨论了惩罚子问题解的表达形式及相应次微分的归属关系. Proximal bundle methods have been shown to be highly efficient for nonsmooth convex optimization problems. We attempt to extend convex cases to nonconvex and inexact cases by modifying the corresponding parameter. In this paper,we give a proximal bundle method for solving a class of nonconvex nonsmooth optimization problems with the approximate values of objective function. We employ the approximate information of the function to build a kind of cutting- planes model. The way given to choose the parameters can not only enforce the nonnegative property of linearization errors,but also can obtain the next iteration point by solving a penalized subproblem. In addition,we study the dual problem of the penalized subproblem,and discuss the solution expression of the penalized subproblem and the ownership of the corresponding subdifferential.
出处 《嘉应学院学报》 2015年第5期5-9,共5页 Journal of Jiaying University
基金 国家自然科学基金(11301246)
关键词 非凸优化 束方法 lower-C2函数 切平面模型 对偶问题 nonconvex optimization bundle method lower-function cutting-planes model dual problem
  • 相关文献

参考文献8

  • 1KIWIEL K C.A proximal bundle method with approximate subgradient linearizations[J].SIAM Journal on optimization,2006,16(4):1007-1023.
  • 2HARE W,SAGASTIZáBAL C.A redistributed proximal bundle method for nonconvex optimization[J].SIAM Journal on Optimization,2010,20(5):2442-2473.
  • 3ROCKAFELLAR R T,WETS R J B.Variational analysis,volume 317 of Grundlehren der Mathematis chen Wissenschaften[Fundamental Principles of Mathematical Sciences] [J].1998.
  • 4BONNANS J F,GILBERT J C,LEMARECHAL C,et al.Numerical optimization[M].Berlin:Springer-Verlag,2003.
  • 5HARE W,SAGASTIZABAL C.Computing proximal points of nonconvex functions[J].Mathematical Programming,2009,116(1-2):221-258.
  • 6SHEN J,PANG L P.An approximate Quasi-Newton bundle-type method for nonsmooth optimization[J].Abstract and Analysis,Volume 2013,Article ID 697474,7 page.
  • 7SHEN J,XIA Z Q,PANG L P.A proximal bundle method with inexact data for convex nondifferentiable minimization[J].Nonlinear Analysis,2007,66,2016-2027.
  • 8SHEN J,PANG L P.A proximal analytic center cuttingplane algorithm for solving variational inequality problems[J].Journal of Applied Mathematics,volume 2012,Article ID 503242,10 Page.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部