期刊文献+

基于离散流形调和基的保特征谱几何处理方法 被引量:1

Approach of feature-preserving spectral geometry processing with discrete manifold harmonic bases
下载PDF
导出
摘要 提出一种离散点云的Laplace算子的估计方法,利用离散化积分以及空间Voronoi图来构造拉普拉斯算子。为使Voronoi图近似更加精确,考虑在切空间投影生成Voronoi图时引入法向约束,相对于直接在切空间中构造Voronoi图,在切空间中生成的各向异性Voronoi图在近似精度上更加逼近于曲面流形上的Voronoi图。几何滤波、骨架提取等实验结果表明,该离散Laplace-Beltrami算子在局部特征的保持上效果更加明显,收敛速度更加迅速。 An approximation of Laplace-Beltrami operator for point clouds by discretizing integration was proposed.To improve the accuracy of the approximation,a normal constraint was introduced to control the projection on tangent spaces.As a result,the anisotropic Voronoi diagram acted better than the one directly constructed on tangent spaces in the terms of accuracy.The results of experiments of geometry filtering and skeleton extraction show the better performance of the proposed operator in the preservation of local features and speed.
出处 《计算机工程与设计》 北大核心 2015年第7期1829-1834,共6页 Computer Engineering and Design
基金 国家自然科学基金青年科学基金项目(61100113) 国家教育部留学归国基金项目(教外司留[2012]940号) 重庆市首批青年骨干教师基金项目(渝教人(2011)31号) 重庆市基础与前沿研究计划基金项目(cstc2013jcyjA40062) 重庆邮电大学科引进人才基金项目(A2010-12)
关键词 谱几何处理 骨架提取 Laplace-Beltrami算子 VORONOI图 离散点云 spectral geometry processing skeleton extractor Laplace-Beltrami operator Voronoi region discrete point cloud
  • 相关文献

参考文献11

  • 1Belkin M, Sun J, Wang Y. Constructing Laplace operator from point clouds in R d [C] //Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2009: 1031-1040.
  • 2Liu Y, Prabhakaran B, Ouo X. Point-based manifold harmo- nics [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18 (10) 1693-1703.
  • 3Zhang H, Van [(aiek O, Dyer R. Spectral methods for mesh processing and analysis [C] //Proceedings of Eurographics State-of-the-Art Report, 2007 1-22.
  • 4Hu J Hua J. Salient spectral geometric features for shape matching and retrieval [J]. The Visual Computer, 2009, 25 (5 7): 667-675.
  • 5Vallet B, Lvy B. Spectral geometry processing with manifold harmonics [C] //Computer Graphics Forum. Blackwell Pub- lishingLtd, 2008, 27 (2): 251-260.
  • 6Qin H, Yang J, Zhu Y. Nonuniform bilateral filtering for point sets and surface attributes [J]. The Visual Computer, 2008, 24 (12): I067-1074.
  • 7Reuter M, Biasotti S, Giorgi D, et al. Discrete Laplace-Bel- trami operators for shape analysis and segmentation [J]. Com- puters g> Graphics, 2009, 33 (3): 381 390.
  • 8Peinecke N, Wolter FE, Reuter M. Laplace spectra as finger- prints for image recognition [J]. Computer-Aided Design, 2007, 39 (6): 460-476.
  • 9Dey TK, Ranjan P, Wang Y. Convergence, stability, and dis- crete approximation of Laplace spectra [C] //Symposium on Discrete Algorithms. Society for Industrial and Applied Mathe- matics, 2010: 650-663.
  • 10Luo C, Sun J, Wang Y. Integral estimation from point cloud in d-dimensional space: A geometric view [C] //Proceedings of the 25tb Annual Symposium on Computational Geometry. ACM, 2009: 116-124.

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部