期刊文献+

基于差分曲率的偏微分方程图像降噪算法 被引量:6

Image denoising of PDE based on difference curvature
下载PDF
导出
摘要 针对图像去噪过程存在边缘保持与噪声抑制的矛盾,提出一种改进的偏微分方程图像降噪算法。将差分曲率引入各项异性扩散方程中,构造出新的扩散系数函数,其可以较好区分图像的边缘、平坦区域以及噪声,使算法在去除噪声的同时,保留更多弱边缘和纹理等细节信息。实验结果表明,该算法与其它基于偏微分方程的图像降噪算法相比,在客观的质量评价方面,提高了图像的信噪比和峰值信噪比;在主观视觉效果方面,在滤除噪声的同时保留了更多的弱边缘等细节信息,该算法实现了较好的图像降噪效果。 Concerning the contradiction between edge-preserving and noise-suppressing in the process of image denoising,an improved partial differential equation(PDE)for image denoising was proposed.Difference curvature was combined with anisotropic diffusion equation,and a new diffusion coefficient function was constructed.As the new diffusion coefficient function effectively distinguished edges from ramp regions and isolated noise,the model preserved more details such as weak edges and textures while getting rid of the noise.Experimental results show that,compared with other image denoising methods based on PDE,the proposed method improves signal-to-noise ratio(SNR)and peak-signal-to-noise ratio(PSNR)in the terms of objective quality evaluation,and preserves more detail information such as weak edges while removing the noise on the aspect of subjective visual effect.Therefore,the presented algorithm obtains better image denoising results.
出处 《计算机工程与设计》 北大核心 2015年第7期1850-1854,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61071192 61271357 61171178) 山西省国际合作基金项目(2013081035) 山西省研究生优秀创新基金项目(2009011020-2 20123098) 中北大学第十届研究生科技基金项目(20131035)
关键词 图像去噪 偏微分方程 各项异性扩散 差分曲率 弱边缘 image denoising partial differential equation anisotropic diffusion difference curvature weak edges
  • 相关文献

参考文献13

  • 1王艳,桂志国,张权,刘祎.基于局部直觉模糊熵的偏微分图像降噪算法[J].计算机工程与设计,2013,34(12):4256-4260. 被引量:2
  • 2DAI F, ZHENG N, XUE J. Image smoothing and sharpening based on nonlinear diffusion equation [J]. Signal Processing,2008, 88 (11): 2850-2855.
  • 3ZHONG J, SUN H. Wavelet-based multi-scale anisotropie dif- fusion with adaptive statistical analysis for image restoration [J]. IEEE Transactions on Circuits and Systems, 2008, 55 (9) : 2716-2725.
  • 4王凯,刘甲甲,袁建英,江晓亮,熊鹰,李柏林.基于小波子带系数能量的优化权值降噪[J].计算机应用,2013,33(8):2341-2345. 被引量:5
  • 5钟莹,杨学志,唐益明,刘灿俊,岳峰.采用结构自适应块匹配的非局部均值去噪算法[J].电子与信息学报,2013,35(12):2908-2915. 被引量:22
  • 6Shin-Min Chao, Du-Ming Tsai. An improved anisotropic diffu- sion model for detail-and edge-preserving smoothing [J]. Pat- tern Reeognition Letters, 2010, 31 (13): 2012 2023.
  • 7CHEN Q, MontesinosP, SUN Q, et al. Adaptive total varia- tion denoising based on difference curvature [J]. Image and Vi- sion Computing, 2010, 28 (3): 298-306.
  • 8陈强,郑钰辉,孙权森,夏德深.片相似性各项异性扩散图像去噪[J].计算机研究与发展,2010,47(1):33-42. 被引量:23
  • 9GUO Z, SUN J, ZHANG D, et al. Adaptive Perona-Malik model based on the variable exponent for image denoising [J]. IEEE Transactions on Image Processing, 2012, 21 (3)I 958-967.
  • 10Mohammad RH. An anisotropic fourth-order diffusion filter for image noise removal [J ]. Springer Science + Business Media, 2011, 92 (2): 177-191.

二级参考文献67

  • 1朱立新,王平安,夏德深.非线性扩散图像去噪中的耦合自适应保真项研究[J].计算机辅助设计与图形学学报,2006,18(10):1519-1524. 被引量:12
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 1990, 12(7): 629-639.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1- 4): 259-268.
  • 4Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29(1) : 182-193.
  • 5You Y L, Kaveh M. Fourth-order partial differential equations for noise removal [J]. IEEE Trans on Image Processing, 2000, 9(10) : 1723-1730.
  • 6Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 2004, 26 (8): 1020-1036.
  • 7Lee S H, Seo J K. Noise removal with Gauss curvaturedriven diffusion [J]. IEEE Trans on Image Processing, 2005, 14(7): 904-909.
  • 8Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455.
  • 9Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden markov models [J]. IEEE Trans on Signal Processing, 1998, 46(4) : 886-902.
  • 10Portilla J, Strela V, Wainwright M J, et al, Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Trans on Image Processing, 2003, 12(11) : 1338-1351.

共引文献43

同被引文献37

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部