期刊文献+

向量优化中集合的一些拓扑与代数性质

Some Topological and Algebraic Properties of Sets in Vector Optimization
原文传递
导出
摘要 在假设B下,证明了int S(+F)=int S+F,建立了两个集合拓扑闭包相等与拓扑内部相等之间的等价条件。结合Flores-Bazán等人的思想,基于集合的代数闭包和代数内部提出了假设B1。在假设B1下,证明了cor S(+F)=cor S+F,得到了集合的代数闭包一定是代数闭集,代数内部一定是代数开集等结果。这些结果是对假设B下集合性质的进一步补充和拓展。 In this paper, int (S+F) =int S4-F is proved under the assumption B. Moreover, we get equivalent conditions about two sets by the concepts of topological closure and topological interior. By means of the idea of Flores-Bazan et al, we present the assumption B1. Under the assumption B1, we obtain cor (S+F) = cor S+F. Based on the condition of assumption B1, we get that the algebraic closure is closed and algebraic interior is open and so on. These results extend and supplement various existing proper- ties of sets under assumption B2.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期8-11,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金项目(No.11301574 No.11271391) 第二批重庆市高等学校青年骨干教师资助计划 重庆市研究生科研创新项目(No.CYS14136)
关键词 假设B 拓扑性质 代数性质 assumption B topological properties algebraic properties
  • 相关文献

参考文献11

  • 1Zhao K Q, Yang X M. A unified.stability result with per- turbations in vector optimization EJJ. Optim Lett, 2013, 7 (8) :1913-1919.
  • 2Zhao K Q,Yang X M,Peng J W. Weak E-optimal solution in vector optimization[J]. Taiwan J Math, 2013, 17 (4) 1287-1302.
  • 3Zhao K Q,Yang X M. E-Benson proper efficiency in vector optimization[J]. Optimization, 2013,64 (4) : 739-752.
  • 4Bonnisseau J M,Crettez B. On the characterization of effi- cient production vectors [J]. Econ Theory, 2007, 31 (2) : 213-223.
  • 5Tammer C,Zdlinescu C. Lipschitz properties of the scalar- ization function and applications[J]. Optimization, 2010,59 (2) ~305-319.
  • 6夏远梅,张万里,赵克全.向量优化中改进集的对偶性质[J].重庆师范大学学报(自然科学版),2014,31(5):26-30. 被引量:3
  • 7廖伟,赵克全.向量优化问题ε-弱有效解的Lagrange乘子定理[J].重庆师范大学学报(自然科学版),2013,30(6):22-24. 被引量:1
  • 8Flores-Bazdn F, Herndndez E. A unified vector optimization problem:complete scalarizations and applications[J]. Opti- mization, 2011,60(12) :1399-1419.
  • 9Flores-Bazdn F, Herndndez E. Optimality conditions for a unified vector optimization problem with not necessarily preordering relations[J ~. J Global Optim, 2013,56 ( 2 ) : 299- 315.
  • 10Tanaka T,Kuroiwa D. The convexity of A and B assures int Aq-B=int (Aq-B) [J]. Appl Math Lett, 1993,6(1) : 83-86.

二级参考文献17

  • 1Kutateladze S S. Convex e-programming[J]. Soviet Math Dokl, 1979,20 : 391-393.
  • 2Loridan P. e-solutions in vector minimization problems[J]. J Optim Theory Appl, 1984,43 : 265-276.
  • 3Gutierrez Z,Jimenez B, Novo V. A unified approach and op timality conditons for approximate solutions of vector opti- mization problems[J]. SIAM J Optim, 2006,17 : 688-710.
  • 4Gao Y, Yang X M. Optimality contions for approximate so- lutions of vector optimization problems[J]. J Ind Manag Optim, 2011,7 : 483-496.
  • 5Zhao K Q,Yang X M. A unifid stability result with perturbationsinvector optimization[J]. Optim Lett. DOI: 10. 1007/s11590-012- 0533-1.
  • 6Li Zhong-fei. Lagrangian multipliers, saddle points, and du- ality in vector optimization of set-valued maps[J]. J Math Anal Appl, 1997,215 : 297-316.
  • 7Rong W D, Wu Y N. e-weak minimal solutions of vector optimization problems with set-vallued maps [J]. J Optim Theory Appl, 2000,106 : 569-579.
  • 8Yang X M, Li D,Wang S Y. Near-subconvexlikeness invec- tor optimization with set-valued functions [J]. J Optim Theory Appl,2001,110:413-427.
  • 9Jahn J. Vector optimization: theory, applications and exten- sions[M]. Berlin : Springer, 2004.
  • 10Qiu J H. Dual characterization and scalarization for Benson proper efficiency[J]. SIAM Journal on Optimization, 2008, 19(1) :144-162.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部