摘要
在假设B下,证明了int S(+F)=int S+F,建立了两个集合拓扑闭包相等与拓扑内部相等之间的等价条件。结合Flores-Bazán等人的思想,基于集合的代数闭包和代数内部提出了假设B1。在假设B1下,证明了cor S(+F)=cor S+F,得到了集合的代数闭包一定是代数闭集,代数内部一定是代数开集等结果。这些结果是对假设B下集合性质的进一步补充和拓展。
In this paper, int (S+F) =int S4-F is proved under the assumption B. Moreover, we get equivalent conditions about two sets by the concepts of topological closure and topological interior. By means of the idea of Flores-Bazan et al, we present the assumption B1. Under the assumption B1, we obtain cor (S+F) = cor S+F. Based on the condition of assumption B1, we get that the algebraic closure is closed and algebraic interior is open and so on. These results extend and supplement various existing proper- ties of sets under assumption B2.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第4期8-11,共4页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金项目(No.11301574
No.11271391)
第二批重庆市高等学校青年骨干教师资助计划
重庆市研究生科研创新项目(No.CYS14136)
关键词
假设B
拓扑性质
代数性质
assumption B
topological properties
algebraic properties