期刊文献+

一致凸Banach空间中α-非扩张映象的强收敛定理 被引量:1

Strong Convergence Theorems forα-nonexpansive Mapping in Uniformly Convex Banach Spaces
原文传递
导出
摘要 设C是一致凸Banach空间中的非空闭凸子集,T:C→C是具有不动点的半紧α-非扩张映象,其中α<1。任取一点x0∈C,{xn}是由xn+1=(1-αn-βn)xn+αnTyn+βnun,yn=(1-γn-δn)xn+γnTxn+δnvn,n=0,1,2,…定义的带误差的Ishikawa迭代序列,其中0<A≤αn≤B<1/2,0≤γn≤γ<1,n=0,1,2,…,∞∑n=0βn<∞,∞∑n=0δn<∞,{un}和{vn}是C中的有界点列。本文证明了{xn}强收敛于T的某一不动点。 Let C be a nonempty closed convex subset of a uniformly convex Banach space, and let T:C→C be a semi-compact α-non- expansive mapping with fixed points, where α〈1. For given x0≥C, suppose that the sequence {x,, } is the Ishikawa iterative se- quence with errors defined by xn+1=(1-αn-βn)xn+αnTyn+βnun,yn=(1-γn-δn)xn+γnTxn+δnvn,n=0,1,2,…, where 0〈A≤αn≤B〈1/2,0≤γn≤γ〈1,n=0,1,2,…,∞∑n=0βn〈∞,∞∑n=0δn〈∞,{un}and{vn} are two bounded sequences in C. It is provedthat the sequence {x. } strongly converges to a fixed point of T.
作者 谭军 向长合
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期74-77,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11171363)
关键词 不动点 α-非扩张映象 半紧 一致凸BANACH空间 ISHIKAWA迭代序列 fixed point α-nonexpansive mapping semi-compact uniformly convex Banach space Ishikawa iterative sequence
  • 相关文献

参考文献7

  • 1Browder F E. Nonexpansive nonlinear operators in a Banach space[J]. Proc Nat Aead Sei USA, 1965,54 : 1041-1044.
  • 2Takahashi W,Shimoji K. Convergence theorems for nonex- pansive mappings and feasibility problems[J]. Mathemati- cal and Computer Modelling, 2000,32 : 1463-1471.
  • 3王学武.一致凸Banach空间非扩张映象带误差的Ishikawa型的三重迭代序列的收敛性[J].大学数学,2007,23(1):56-60. 被引量:2
  • 4向长合.一致凸Banach空间上有限个非扩张映象的隐式迭代过程[J].重庆师范大学学报(自然科学版),2006,23(2):5-7. 被引量:2
  • 5Aoyama K, Kohsaka F. Fixed point theorem for ocnonex- pansive mappings in banach spaces [J]. Nonliner Anal, 2011,74:4387-4391.
  • 6Xu Y G. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations [J]. J Math Anal Appl,1998,224:91-101.
  • 7Chang S S, Cho Y J, Zhou H Y. Demi-closed principle and weak convergence problems for asymptotically nonexpansive map- pings[J]. J Korean Math Soc, 2001,38 : 1245-1260.

二级参考文献15

  • 1贾如鹏,王俊青.一致凸Banach空间非扩张映像具误差的Ishikawa迭代[J].数学的实践与认识,2004,34(8):158-161. 被引量:6
  • 2王学武.一致凸Banach空间非扩张映象带双误差的Ishikawa迭代[J].湖州师范学院学报,2005,27(1):13-16. 被引量:1
  • 3HALPERN B. Fixed Points of Nonexpanding Maps [J].Bull Amer Math Soc, 1967, 73: 957-961.
  • 4OPIAL Z. Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings [J]. Bull Amer Math Soc, 1967, 73: 595-597.
  • 5CHANG S S, CHO Y J, ZHOU H Y. Demi-closed Principle and Weak Convergence Problems for Asymptotically Nonexpansive Mappings [J]. J Korean Math Soc, 2001,38: 1245-1260.
  • 6XU H K, ORI R G. An Implicit Iteration Process for Nonexpansive Mappings[J]. Numer Funct Anal and Optimiz,2001,22: 767-773.
  • 7ZHOU Y Y, CHANG S S. Convergence of Implicit Iterative Process for a Finite Family of Asymptotically Nonexpansive Mappings in Banach Spaces [J]. Numer Funct Anal and Optimiz, 2002, 23: 911-921.
  • 8CHANG S S, CHO Y J. The Implicit Iterative Processes for Asymptotically Nonexpansive Mappings [J]. Nonlinear Anal and Appl, 2003,(1): 369-382.
  • 9LIU L S. Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces[J]. J Math Anal Appl, 1995,194: 114-125.
  • 10Schu J. Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings [J]. Bull Austral Math Soc, 1991, 43: 153-159.

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部