期刊文献+

空泡在T型微通道中的分裂特性 被引量:1

Breakup Characteristics of Bubble Moving in T-Junction Micro-Channel
下载PDF
导出
摘要 在不同流速下通过精确控制空气和水的入口速度比,获得了不同体积的空泡.借助高速摄像系统记录产生的空泡在T型微通道分岔处分裂的全过程,并采用计算流体动力学对空泡运动过程进行数值模拟.分析了空泡体积和流场速度对空泡分裂特性的影响,从而得出空泡分裂的判据.结果表明:空泡在T型微通道中的分裂包含5种方式,与流场速度和空泡体积相关—流场速度越大,空泡体积越小,空泡发生分裂越剧烈;微通道尺度越小,流体黏性、表面张力以及流速对空泡分裂特性的影响越显著. Under different flow field velocities, bubbles with different volumes were gained by accurate control of inlet velocity of air and water. The breakup process of the generated bubbles in T-junction mi- cro-channel was recorded by high-speed imaging system. In addition, computational fluid dynamics was used to simulate the breakup process of bubble. The criterion of estimating the bubble breakup was ob- tained. The results show that the bubble breakup contains five major modes in T-junction micro-channel, depending on flow field velocity and bubble volume. The higher the flow field velocity and the smaller the bubble volume, the more intense the bubble breakup. The effects of fluid viscosity, surface tension and flow field velocity on bubble breakup become more significant for smaller micro-channel.
出处 《纳米技术与精密工程》 CAS CSCD 北大核心 2015年第4期305-311,共7页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(51275064 50975036)
关键词 空泡分裂 T型微通道 流场速度 空泡体积 bubble breakup T-junction micro-channel flow field velocity bubble volume
  • 相关文献

参考文献25

  • 1金光远,阎昌琪,孙立成,幸奠川,孙波.周期惯性力影响下矩形通道泡状流阻力特性[J].化工学报,2013,64(4):1198-1203. 被引量:3
  • 2赵新华,孙尧,安伟光,莫宏伟.超空泡航行体控制问题研究进展[J].力学进展,2009,39(5):537-545. 被引量:8
  • 3Ashutosh A, Wun J N, Yu L. Principle and applications of microbubble and nanobubble technology for water treatment [J]. Chemosphere, 2011, 84(9) : 1175-1170.
  • 4Arrojo S, Benito Y, Tarifa A M. A parametrical study of disinfection with hydrodynamic cavitation[J]. Ultrason Sonochern, 2008, 15(5): 903-908.
  • 5Azher N E, Gourich B, Vial C, et al. Study of ferrous iron oxidation in Morocco drinking water in an airlift reactor[ J]. Chem Eng Process, 2008, 47(9/10) : 1877-1886.
  • 6Makuta T, Sakaguchi M, Kusama H. Fabrication of metal nanoparticle by microbubble oscillation in molten metal [ J ]. Mater Lett, 2012, 77: 110-112.
  • 7Brandon S, All K, Yoav P. Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels [J]. Int J Heat Mass Transfer, 2007, 50(13/14): 2838- 2854.
  • 8William B Z, Buddhika N H, Vaclav T, et al. On the de- sign and simulation of an airlift loop bioreactor with micro- bubble generation by fluidic oscillation [ J ]. Food and Bio- products Process, 2009, 87 (3): 215-227.
  • 9Link D R, Anna S L, Weitz D A, et al. Geometrically me- diated breakup of drops in microfluidic devices [ J ]. Phys Rev Lett, 2004, 92 (5) : 0545031-0545034.
  • 10Calderon A J, Heo Y S, Huh D, et al. Microfluidic model of bubble lodging in microvessel bifurcations [ J ]. Applied Phys Lett, 2006, 89(24): 244103-1-3.

二级参考文献38

共引文献22

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部