期刊文献+

考虑信号特点的合成量子启发结构元素 被引量:3

Compound quantum-inspired structuring element considering signal characteristics
下载PDF
导出
摘要 受量子理论启发,结合数学形态滤波器中的膨胀算子,提出合成量子启发结构元素(Compound quantum-inspired structuring element,CQSE),用于增强故障振动信号中的冲击响应成分。CQSE综合考虑了信号的局部特征和随机性,其高度能够跟随信号的变化进行动态调整。首先,建立了量子启发结构元素(Quantum-inspired structuring element,QSE)的基本数学表达式。随后,采用峭度描述冲击响应信号的局部特征,并用于生成QSE在实数空间的单一形式(Single form in real space,SFRS)的高度;采用信号的归一化振动大小描述信号的随机性,并用于计算不同SFRS出现的量子概率。然后,结合量子概率,通过数学期望,对不同的SFRS进行合成,获得应用于膨胀算子的CQSE。最后,将CQSE应用于轴承故障诊断,有效地增强了故障信息。 Inspired by the quantum theory, a Compound Quantum-inspired Structuring Element (CQSE) based on morphological dilation operator is proposed to enhance shock response component of fault vibration signals. The CQSE considers both the local feature and stochastic characteristics of the signals, therefore, COSE adjusts its height dynamically according to signal. First, the basic expression of Quantum-inspired Structuring Element (QSE) is proposed. Second, the kurtosis, which is employed to describe the local feature of shock response signals, is utilized to generate the height of Single Form in Real Space (SFRS) of QSE; the normalized signal, which is employed to describe the stochastic characteristics of signals, is utilized to compute quantum-inspired probability of each SFRS. Third, combing quantum-inspired probability with mathematical expectation, the CQSE for morphological dilation operator is obtained. Finally, the CQSE is applied to bear fault diagnosis and enhance the fault information effectively.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第4期1181-1188,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51205405 51305454)
关键词 仪器仪表技术 结构元素 量子理论 局部特征 随机性 technology of instrument and meter structuring element quantum theory local feature stochastic characteristics
  • 相关文献

参考文献17

  • 1隋文涛,张丹.基于峭度的阈值降噪方法及在振动信号分析中应用[J].振动与冲击,2013,32(7):155-158. 被引量:15
  • 2Gervaise C, Barazzutt A, Busson S, et al. Automat- ic detection of bioacoustics impulses based on kurto- sis under weak signal to noise ratio[J]. Applied A- coustics, 2010, 71: 1020-1026.
  • 3DongYB, Liao MF, ZhangX L, et al. Faults di- agnosis of rolling element bearings based on modified morphological method[J]. Mechanical Systems and Signal Processing, 2011, 25: 1276-1286.
  • 4Li B, Zhang P L, Wang Z J, et al. A weighted multi-scale morphological gradient filter for rolling element bearing fault detection[J]. ISA Transac- tions, 2011, 50: 599-608.
  • 5Li H, Xiao D Y. Fault diagnosis using pattern clas- sification based on one-dimensional adaptive rank-or- der morphological filter[J]. Journal of Process Con- trol, 2012, 22: 436-449.
  • 6Zhang L J, Xu J W, Yang J H, et al. Multiseale morphology analysis and its application to fault diag- nosis[J]. Mechanical Systems and Signal Process- ing, 2008, 22: 597-610.
  • 7Layeb A. A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems[J]. Journal of Computational and Applied Mathematics, 2013, 253: 14-25.
  • 8李兵,张培林,米双山.机械故障信号的数学形态学分析与智能故障诊断[M].北京:国防工业出版社,2011.
  • 9Tsa J, Hsiao F Y, Li Y J, et al. A quantum search algorithm for future spacecraft attitude determina- tion[J]. Acta Astronautica, 2011, 68: 1208-1218.
  • 10Niu Q, Zhou T J, Fei M R, et al. An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems[J]. Mathemat- ics and Computers in Simulation, 2012, 84: 1-25.

二级参考文献26

  • 1谢可夫,罗安.量子启发数学形态学的研究[J].电子学报,2005,33(2):284-287. 被引量:19
  • 2Lu J,Healy D M,Weaver J B.Contrast enhancement of medical images using multiscale edge representation[J].Optical Engineering,1994,33(7):2151-2161.
  • 3Gonzalez R C,Woods R E.Digital Image Processing[M].Beijing:Publishing House of Electronics Industry,2005.75-141.
  • 4Florea C,Vlaicu A,Gordan M,et al.Fuzzy intensification operator based contrast enhancement in the compressed domain[J].Applied Soft Computing,2009,9(3):1139-1148.
  • 5Matz S C,Figueiredo R J P.A nonlinear image contrast sharpening approach based on Munsell's scale[J].IEEE Transactions on Image Processing,2006,15(4):900-909.
  • 6LEE Y H,PARK S Y.A study of convex/concave edges and edge-enhancing operators based on the laplacian[J].IEEE Transactions on Circuits and Systems,1990,37(7):940-946.
  • 7Munteanu C,Rosa A.Gray-scale image enhancement as an automatic process driven by evolution[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2004,34(2):1292-1298.
  • 8佐川弘幸,吉田宣章.突破经典信息科学的极限--量子信息论[M].宋鹤山,宋天.大连:大连理工大学出版社,2007.2-14.
  • 9Han K H,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(6):580-593.
  • 10Tubbs J D.A note on parametric image enhancement[J].Pattern Recognition,1987,20 (6):617-621.

共引文献48

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部