期刊文献+

高强度硼钢淬火界面热交换系数的实验与模拟

Experiment and simulation on quenching interface heat transfer coefficient of high-strength boron steel
下载PDF
导出
摘要 通过测量硼钢B1500HS淬火过程中板料和模具的温度变化曲线,结合有限元分析及反传热模型获得淬火过程中板料与模具间的界面热交换系数(IHTC)与温度的关系。结果表明:板料温度从770℃下降到200℃,IHTC的变化范围在1970~3960 W/(m2·K)之间。随着板料温度的降低,IHTC随之降低,但由于材料在410℃时发生奥氏体向马氏体的转变,相变潜热的释放导致IHTC不连续的现象发生。与以距离模具形面下方1mm处作为淬火介质的环境温度相比,以模具形面处作为淬火介质的环境温度得到的IHTC分布规律同前者基本一致,但IHTC的数值较高。 Interface Heat Transfer Coefficient (IHSC) between blank and tools is the key factor to obtain the temperature field, stress and strain fields and microstructure distribution of boron steel hop stamping parts. By measuring the temperature changes of the blank and die in the process of quenching combined with finite element analysis and the inverse heat transfer model, the relationship between the interface heat transfer coefficient and temperature was obtained. The results show that IHSC ranges from 1970 W/(m2 ~ K) to 3960 W/(m2 ~ K) when the temperature of the blank decreases from 770 ~C to 200 ~C. IHTC decreases as the temperature of the blank decreases. However, the release of latent heat during the transformation from austenite to martensite results in the discontinuity of IHTC at 420 ~C. The distribution of IHTC is almost the same under different environmental temperatures and quenching mediums. The IHTC values of the die surface temperature as quenching medium are higher than those at the location 1 mm below the surface of the die.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第4期1195-1199,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51205162 51275203)
关键词 金属材料 硼钢 热冲压 界面热交换系数 反传热模型 metal material boron steel hot stamping interface heat transfer coefficient inverse heat transfer model
  • 相关文献

参考文献12

  • 1Merklein M, Lechler J. Determination of material and process characteristics for hot stamping proces- ses of quenchable ultra high strength steels with re- spect to a FE-based process design[J]. SAE Int J Mater Manuf, 2009,1(1) :411-426.
  • 2Akerstr0m P, Oldenburg M. Austenite decomposi- tion during press hardening of a boron steel-comput- er simulation and test[J]. Journal of Materials Pro- cessing Technology, 2006, 174 : 399-406.
  • 3Tekkaya A E, Karhasian H, Homberg W, et al. Thermo-mechanical coupled simulation of hot stam- ping components for process design[J]. Computer Aided Engineering, 2007, 1(1) :85 -89.
  • 4LeeMG, KimSJ , HanH N, etal. Application of hot press forming process to manufacture an auto- motive part and its finite element analysis consider-ing phase transformation plasticity[J]. International Journal of Mechanical Sciences, 2009, 51 (11-12) : 888-898.
  • 5张志强.高强度钢板热冲压技术及数值模拟[J].热加工工艺,2010,39(11):103-105. 被引量:21
  • 6张志强.B柱热冲压数值分析研究[J].锻压技术,2010,35(3):57-60. 被引量:11
  • 7Zhang Zhi-qing, Ye Zhong-chao, Zhang Yi-sheng, et al. Numerical analysis on hot stamping of B pillar reinforcement of automobiles[J]. Advanced Materi- als Research, 2010 (97-101) :282-285.
  • 8Tondini F, Bosetti P, Bruschi S. An experimental- numerical procedure to identify heat transfer coeffi- cient in hot stamping processes[C]//Proceedings of Euromech, Lisboa, 2009: 1-7.
  • 9Abdulhay B, Bourouga B, Dessain C, et al. Experi- mental study of heat transfer in hot stamping process [J]. International Journal of Material Forming,2009, 2(Suppl. 1) :255-257.
  • 10Merklein M , Lechler J, Stoehr T. Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping[J]. Interna- tional Journal of Material Forming, 2009, 2 (Sup- pl. ) :259-262.

二级参考文献28

  • 1Eriksson M, Oldenburg M, Somani M C, et al Testing and evaluation of material data for analysis of forming and hardeing of boron steel components [J]. Modelling simu. Mater. Sci. Eng., 2002, 10:277-294.
  • 2Naderi M, Uthaisangsuk V, Prahl U, etal. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels [J]. Steel Research International,2008, 79 (2): 77-84.
  • 3Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels [J]. Journal of Materials Processing Technology, 2006, 177:452-455.
  • 4Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology, 2006, 177:396-400.
  • 5Oberpriller B, Burkhardt L, Griesbach B. Benchmark 3-Continuous press hardening Part A: Physical Tryout Report [C]. Switzerland: Institute of Virtual Manufacturing, 2008.
  • 6Oberpriller B, Burkhardt L, Griesbach B. Benchmark3-Continuous press hardening Part B: Benchmark Analysis [C]. Switzerland: Institute of Virtual Manufacturing, 2008.
  • 7Naderi M, Saced-Akbari A, Bleck W. The effects of non-isothermal deformation on martcnsitic transformation in 22MnB5 steel [J]. Materials Science and Engineering A, 2008, 487: 445-455.
  • 8Eriksson M, Oldenburg M, Somani M C, et al. Testing and evaluation of material data for analysis of forming and hardening of boron steel components [J]. Modelling Simu. Mater. Sei. Eng., 2002, 10:277-294.
  • 9Naderi M, Uthaisangsuk V, Prahl U, et al. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels [J]. Steel Research International, 2008, 79(2): 77-84.
  • 10Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchenable ultra high strength steels with respect to a FE-based process design [A]. SAE World Congress: Innovations in Steel and Applications of Advanced High Steels for Automotive Structures[C]. SAE International, 2009.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部