期刊文献+

广义和超广义投影算子的一些新特征 被引量:1

Some new properties of generalized and hypergeneralized projectors
下载PDF
导出
摘要 利用矩阵的Σ-K-L分解,研究了广义投影算子(A2=A*)和超广义投影算子(A2=A+)的性质,得到了一些新的特征,这些结论推广了Baksalary的有关结果. Using the decomposition of ∑-K-L of the matrix, we obtain several new prop- erties and characteristics of the generalized projectors( A^2 = A^*) and the hypergeneralized projectors( A^2 = A^+ ), which generalize some related results of Baksalary.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期488-491,496,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(11271105) 湖北省教育厅重点项目(D20122202)
关键词 广义逆 广义投影算子 超广义投影算子 generalized inverse generalized projectors hypergeneralized projectors
  • 相关文献

参考文献10

  • 1Wang Guorong, Wei Yimin, Qiao Sansheng. Generalized In- verses: Theory and Computations[M]. Beijing: Science Press, 2004.
  • 2Ben-Israel A,Greville T N E. Generalized inverses[M]. New York : Springer-Verlag, 2003.
  • 3Grob J, Trenkler G. Generalized and hypergeneralized projec- tors[J].Linear Algelre Appl, 1997, 264:463-474.
  • 4Baksalary J K, Liu Xiaoji. An alternative characterization of generalized projectors [J]. Linear Algebra Appl, 2004, 388: 61-65.
  • 5Baksalary J K,Baksalary O M,Liu Xiaoji. Further properties of generalized and hypergeneralized projectors [J]. I.inear Algebra Appl, 2004, 389:295-303.
  • 6Baksalary J K, Baksalary O M,Liu Xiaoji. Further results on generalized and hypergeneralized projectors[J]. Linear Al- gebra Appl, 2008, 429 : 1038-1050.
  • 7Baksalary O M. Revisitation of generalized and hyper general- ized proiectors[C]//Statistical Inference, Econometric Anal- ysis and Matrix Algebra: Festsehrift in Honour of GStz Trenkler-Heidelberg:Physica-Verl, 2009: 317-324.
  • 8Hartwig R E, Spindelboek K. Matrices for which A · and A+ eommute[J]. Linear Multilinear Algebra, 1984, 14:241 256.
  • 9Baksalary O M, Trenkler G. On k potent matrices[J]. Elec- tronic Journal of Linear Algebra, 2013, 26:446-470.
  • 10Benitez J, Liu Xiaoji. Expressions for generalized inverses of square matrices[J]. Linear Multilinear Algebra, 2013, 61: 1536-1554.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部