期刊文献+

互补设计在广义离散偏差下的均匀性

Uniformity in complementary designs in term of generalized discrete discrepancy
下载PDF
导出
摘要 针对一类特殊的二、三混水平部分因子设计d=(D■D),在适当的划分下分别给出了互补设计的广义离散偏差与子设计D(D)的广义字长型及均匀性模式的解析关系,同时给出了互补设计的广义离散偏差的下界,最后通过例子来验证其结论. In this paper, we consider a special kind of designs d = (D D) with two and three mixed levels. Under a proper decomposition, the connections between uniformity measured by generalized discrete discrepancy and generalized word length pattern or uniformity pattern for a pair of complementary designs d are obtained, and a lower bound of generalized discrete discrepancy of this kind of fractional factorials is obtained. Finally, an illustrative example is given to shown our theoretical results.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期492-496,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(11201177) 湖南省教育厅优秀青年项目(14B146) 湖南省教育厅科研项目(12C0287) 吉首大学校级科研项目(13JDY041) 吉首大学学成返校博士科研项目(jsdxxcfxbskyxm201113)
关键词 互补设计 广义离散偏差 混水平因子设计 均匀设计 complementary design generalized discrete discrepancy mixed level factorials uniform design
  • 相关文献

参考文献8

  • 1Hickernell F J, Liu M Q. Uniform designs limit aliasing[J]. Biometrika, 2002, 89:893-904.
  • 2Chatterjee K, Qin H. Generalized discrete discrepancy and its applications in experimental designs[J]. J Stat Plann In- fer,2011, 141: 951-960.
  • 3Qin H. Characterization of generalized aberration of some de- signs in terms of their complementary design [J]. J Stat Plann Infer, 2003, 117: 141-151.
  • 4Ma C X, Fang K T. A note on generalized aberration factori aldesigns[J]. Metrika,2001, 53: 85-93.
  • 5FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 6Zhang S L, Qin H. Minimum projection uniformity criterion and its application[J]. Statist Probab Letters, 2006, 76: 634-640.
  • 7李洪毅,欧祖军.互补设计在Lee偏差下的均匀性[J].华中师范大学学报(自然科学版),2011,45(1):1-5. 被引量:2
  • 8Luis B M, Carlos V. A complete classification of (12,4,3)- RBIBDs[J]. J Combin Designs, 2001, 9 : 385-400.

二级参考文献8

  • 1FANG Kaitai QIN Hong.Uniformity pattern and related criteria for two-level factorials[J].Science China Mathematics,2005,48(1):1-11. 被引量:16
  • 2Hickernell F J,Liu M Q.Uniform designs limit aliasing[J].Biometrika,2002,89:893-904.
  • 3Zhou Y D,Ning J H,Song X B.Lee discrepancy and its applications in experimental designs[J].Statist Probab Letters,2008,78:1933-1942.
  • 4Ma C X,Fang K T.A note on generalized aberration factorial designs[J].Metrika,2001,53:85-93.
  • 5Zhang S L,Qin H.Minimum projection uniformity criterion and its application[J].Statist Probab Letters,2006,76:634-640.
  • 6Qin H.Characterization of generalized aberration of some designs in terms of their complementary designs[J].J Stat Plann Infer,2003,117:141-151.
  • 7Luis B M,Carlos V A.Complete classification of (12,4,3)-RBIBDs[J].J Combin Designs,2001,9:385-400.
  • 8Chang-Xing Ma,Kai-Tai Fang.A note on generalized aberration in factorial designs[J].Metrika.2001(1)

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部