摘要
针对一类特殊的二、三混水平部分因子设计d=(D■D),在适当的划分下分别给出了互补设计的广义离散偏差与子设计D(D)的广义字长型及均匀性模式的解析关系,同时给出了互补设计的广义离散偏差的下界,最后通过例子来验证其结论.
In this paper, we consider a special kind of designs d = (D D) with two and three mixed levels. Under a proper decomposition, the connections between uniformity measured by generalized discrete discrepancy and generalized word length pattern or uniformity pattern for a pair of complementary designs d are obtained, and a lower bound of generalized discrete discrepancy of this kind of fractional factorials is obtained. Finally, an illustrative example is given to shown our theoretical results.
出处
《华中师范大学学报(自然科学版)》
CAS
北大核心
2015年第4期492-496,共5页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11201177)
湖南省教育厅优秀青年项目(14B146)
湖南省教育厅科研项目(12C0287)
吉首大学校级科研项目(13JDY041)
吉首大学学成返校博士科研项目(jsdxxcfxbskyxm201113)
关键词
互补设计
广义离散偏差
混水平因子设计
均匀设计
complementary design
generalized discrete discrepancy
mixed level factorials
uniform design