期刊文献+

时空CoKriging的变异函数建模 被引量:4

Variogram modeling in space-time CoKriging
下载PDF
导出
摘要 在对地观测中,所研究的地学变量不仅具有时间、空间特征,还受其他变量的影响,采用多元时空相关数据,可以提高时空估值的精度.时空CoKriging是多元时空插值中一种常用的方法,建立时空变异函数和协变异函数是时空CoKriging插值的关键一步.以东北三省为试验区,利用该地区气象站观测数据的月平均空气相对湿度为主变量,引入同时间同位置的月平均空气温度作为协变量,对空气相对湿度和空气温度进行时空变异函数和时空协变异函数建模.实验结果表明,采用和度量时空模型的时空变异函数的随机性空间结构建模的实际拟合效果较好. The variables used in various environmental studies not only have the spatial temporal dependence, but also are affected by other variables. However, the multivariate space-time correlated data can be used to improve the accuracy of space-time prediction and interpolation. The space-time CoKriging is a commonly used method of multivariate space-time interpolation, with modeling a space-time direct variogram and a cross variogram as a key step. Therefore, taking the three provinces in Northeastern China as study area. this paper modeled the space-time direct variograms and cross variograms for air relative humidity and air temperature by using the monthly mean relative air humidity observed in meteorological stations as a main variable and the air temperature in the same position and at the same time as a covariate variable. Inverse distance weighted interpolation was used to get the current meteorological observation data. The experi mental results show that the space-time variogram using sum-metric model is well fitted, compared to the deterministic structure modeling spatial distance inversely.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期596-602,622,共8页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(41171313) 苏州市科技计划项目(SYG201319) 地理空间信息工程国家测绘地理信息局重点实验室开放研究基金项目(201329) 湖北省自然科学基金项目(2014CFB725)
关键词 多元时空变量 和度量模型 变异函数 空气相对湿度 multivariate space-time variables Sum-metric model variograms air relarive humidity
  • 相关文献

参考文献20

  • 1李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报(信息科学版),2012,37(2):237-241. 被引量:47
  • 2Genton M G. Separable approximations of space-time covari- anee matrices[J]. Environmetrics, 2007, 18: 681-696.
  • 3Mitchell M W, Genton M G, Gumpertz M L. Testing for Separability of space-time covarianees [J]. Environmetrics, 2005, 16: 819-831.
  • 4Cressie N, Huang H C. Classes of nonseparable spatio tem- poral stationary covarianee functions[J]. Journal of the A- merican Statistical Association, 1999, 94:1330-1340.
  • 5Ma C S. Spatio-temporal stationary covariance models[J]. Journal of Multivariate Analysis, 2003, 86: 97-107.
  • 6Porcu E, Gregori P, Mateu J. Nonseparable stationary ani sotropic space-time covariance functions [J]. Environmental Research and Risk Assessment, 2006, 21: 113-122.
  • 7Gneiting T. Nonseparable, stationary covariance functions for space-time data[J]. Journal of the American Statistical Association, 2002, 97: 590-600.
  • 8徐爱萍,圣文顺,舒红.时空积和模型的数据插值与交叉验证[J].武汉大学学报(信息科学版),2012,37(7):766-769. 被引量:9
  • 9De Cesare L, Myers D E, Posa D. Product-Sum covariance for space-time modeling: an environmental application[J]. Environmetrics, 2001, 12 : 11-23.
  • 10Myers. D E. Space-time correlation models and contami- nant plumes[J].Environmetrics, 2002, 13:535-553.

二级参考文献22

  • 1杨德伟,陈治谏,倪华勇,蒋莉,廖晓勇.基于能值分析的四川省生态经济系统可持续性评估[J].长江流域资源与环境,2006,15(3):303-309. 被引量:37
  • 2Willmott C J, Robeson S M. Climatologically Aided Interpolation of Terrestrial Air Temperature[J].International Journal of Climatology, 1995, 15 (2) 221-229.
  • 3Koike K, Matsuda S, Gu B. Evaluation of Interpolation Accuracy of Neural Kriging with Application to Temperature-distribution Analysis[J].Mathematical Geology, 2001, 33(4): 421-448.
  • 4Nalder I A, Wein R W. Spatial Interpolation of Cli- mate Normals: Test of a New Method in the Canadian Boreal Forest[J]. Agric For Meteorol, 1998, 92:211-225.
  • 5侯景儒.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1998.
  • 6de Cesare L, Myers D E, Posa D. Spatial-Temporal Modeling of SO2 in Milan District[C]. Geostatistics Wollongong'96, Dordrecht, 1996.
  • 7Rouhani S, Hall T J. Space-Time Kriging of Ground Water Data[C]. Geostatistics, Dordrecht, 1989.
  • 8Brown P E, Karesen K F, Roberts G O, et al. Blur-generated Non-separable Space-Time Models [J]. J Roy Statist SocB, 2000, 62:847-860.
  • 9Ma C. Families of Spatio-temporal Stationary Covariance Models[J]. J Stat Plan Infer, 2003, 116: 489-501.
  • 10de Iaco S, Myers D E, Posa D. Nonseparable Space- Time Covariance Models.. Some Parametric Families [J]. Mathematical Geology, 2002, 34:23-42.

共引文献52

同被引文献41

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部