期刊文献+

An Improved Method for Predicting Linear B-cell Epitope Using Deep Maxout Networks 被引量:1

An Improved Method for Predicting Linear B-cell Epitope Using Deep Maxout Networks
下载PDF
导出
摘要 To establish a relation between an protein amino acid sequence and its tendencies to generate antibody response,and to investigate an improved in silico method for linear B-cell epitope(LBE)prediction.We present a sequence-based LBE predictor developed using deep maxout network(DMN)with dropout training techniques.A graphics processing unit(GPU)was used to reduce the training time of the model.A 10-fold cross-validation test on a large,non-redundant and To establish a relation between an protein amino acid sequence and its tendencies to generate antibody response,and to investigate an improved in silico method for linear B-cell epitope(LBE)prediction.We present a sequence-based LBE predictor developed using deep maxout network(DMN)with dropout training techniques.A graphics processing unit(GPU)was used to reduce the training time of the model.A 10-fold cross-validation test on a large,non-redundant and
出处 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第6期460-463,共4页 生物医学与环境科学(英文版)
基金 supported by grant 2009CB918801 from the Ministry of Science and Technology of China
关键词 epitope redundant graphics predictor hidden validation trained verified redundancy utilized epitope redundant graphics predictor hidden validation trained verified redundancy utilized
  • 相关文献

参考文献10

  • 1Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature, 1986; 322, 747-8.
  • 2Gao J, Kurgan L. Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol, 2014; 1184, 197-215.
  • 3Goodfellow I J, Warde-Farley D, Mirza M, et al. Maxout Networks. In International conference on machine learning, 2013.
  • 4Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res, 2010, 38, D854-62.
  • 5EI-Manzalawy Y, Dobbs D, Honavar V. Predictin8 linear B-cell epitopes using string kernels. J Mol Recognit, 2008; 21, 243-55.
  • 6Goodfellow LI, Warde-Farley D, Lamblin P, et al. Pylearn2: a machine learning research library, arXiv preprint, 2013; arXiv:1308.4214.
  • 75aha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006; 65, 40-8.
  • 8Chen J, Liu H, Yang J, et al. Prediction of linear B-cell epitopes using amino acid pair ant-igenicity scale. Amino Acids, 2007; 33, 423-8.
  • 9Lian Y, Ge M, Pan X. EPMLR: Sequence-based linear B-cell epitope prediction method using multiple linear regression. 8MC Bioinformatics, 2014; 15,414.
  • 105ingh H, Ansari HR, Raghava GP. Improved method for linear B-cell epitope prediction using antigen's primary sequence. PLoS One, 2013; 8, e62216.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部