期刊文献+

一类本原有向图的m-competition指数及广义scrambling指数

The m-competition index and generalized scrambling indices of a class of primitive digraph
下载PDF
导出
摘要 根据图论、数论和集合的相关知识,对本原图中任一点经过k长途径所到达点的集合进行分析,结合广义competition指数和广义scrambling指数的定义,研究了一类特殊本原有向图(含有2个s-1圈和s个s圈)。得到了这一类本原有向图的m-competition指数以及广义scrambling指数。 According to the relevant knowledge of graph theory and number theory and the set theory, by analyzing the set of vertexes, which are formed by every vertex passing a walk of length k in the primitive digraph, combining with the definition of m-competition index and generalized scrambling indices, the m-competition index and the generalized indices of a class of primitive digraph with two (s-1)-cycles and s s-cycles are obtained.
作者 申佳 高玉斌
机构地区 中北大学数学系
出处 《湖南文理学院学报(自然科学版)》 CAS 2015年第3期6-10,共5页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 国家自然科学基金项目(11071227) 山西省回国留学人员科研资助项目(2012-070)
关键词 本原有向图 本原指数 m-competition指数 广义scrambling指数 primitive digraph primitive exponent scrambling index m-competition index
  • 相关文献

参考文献10

  • 1Akelbek M, Kirkland S. Coefficients of ergodicity and the scrambling index [J]. Linear Algebra and its Applications, 2009, 430(4): 1 111-1 130.
  • 2Huang Y, Liu B. Generalized scrambling indices of a primitive digraphs [J]. Linear Algebra and its Applications, 2010, 433: 1 798-1 808.
  • 3Kim H K. Generalized competition index of a primitive digraph [J]. Linear Algebra and its Applications, 2010, 433(1): 72-79.
  • 4Shao Y L, Gao Y B. The m-competition indices of symmetric primitive digraphs with loop [J]. Ars Combination, 2013,. 108: 217-223.
  • 5Kim H K, Pank S G. A bound of generalized competition index of a primitive digraph [J]. Linear Algebra and its Applications, 2012, 436(1): 86-98.
  • 6Akelbek M, Kirkland S. Primitive digraphs with the largest scrambling index [J]. Linear Algebra and its Applications, 2009, 430:1 099-1 110.
  • 7Gao Y, Shao Y. The scrambling indices of primitive digraphs with exactly two cycles [J]. Ars Combination, 2013, 108: 505-513.
  • 8Hwa K K. Scrambling index set of primitive digraphs [J]. Linear Algebra and its Applications, 2013, 439:1 886-1 893.
  • 9Brualdi R A, Ryser H J. Combinatorial Matrix Theory [M]. Cambridge: Cambridge University Press, 1991.
  • 10Kim H K, Lee S H. Generalized competition indices of symmetric primitive digraphs [J]. Discrete Applied Mathematics, 2012, 160(10-11): 1 583-1 590.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部