期刊文献+

基于DEFORM-3D软件的AZ31镁合金管材反挤压过程计算机模拟研究 被引量:6

Computer Simulation Study on Backward Extrusion Process of AZ31 Magnesium Alloy Tube Based on DEFROM-3D Software
下载PDF
导出
摘要 通过DEFORM-3D软件对AZ31镁合金在300℃进行了不同壁厚(5、2.5、1mm)管的反挤压成形模拟。结果表明,在300℃能成功地反挤成形,但挤压过程中变形不均匀。随着离试样中心位置的距离增大,变形有效应变先增大后减小,这主要与反挤压过程中材料流动的不同有关。总之,在300℃能够反挤压成形管壁1mm的镁合金筒形件。 The backward extrusion forming process of AZ31 magnesium alloy tube with different wall thickness( 5, 2.5,1mm) at 300℃ was simulated by using DEFORM-3D software. The results show that the backward extrusion can be performed successfully at 300℃, but the deformation is un-homogeneous in extrusion process. The effective strain increases firstly then decreases with the distance increasing from the specimen center position. This is mainly related to the difference of material flow in backward extrusion process. In a word, magnesium alloy tube parts with the wall of 1mm can be formed at 300℃ in backward extrusion.
作者 韩冬瑞 董延
出处 《热加工工艺》 CSCD 北大核心 2015年第11期158-161,共4页 Hot Working Technology
基金 河南省教育厅自然科学基金资助项目(200310824001)
关键词 模拟 反挤压 AZ31镁合金 筒形件 simulation backward extrusion AZ31 magnesium alloy tube parts
  • 相关文献

参考文献13

  • 1Aghion E,Bronfin B. Magnesium alloys development towardsthe 21st century [J]. Materials Science Forum,2000,350/351 :19-30.
  • 2Yasia J A, Hector L G. First-Principles Data for Solid-SolutionStrengthening of Magnesium : From Geometry and Chemistry toProperties[J]. Acta Materials, 2010,58 : 5704-5713.
  • 3Wang Lifei,Huang Guangsheng,Li Hongcheng,et al. Influenceof strain rate on microstructure and formability of AZ31B mag-nesium alloy sheets [J]. Trans. Nonferrous Met. Soc.China,2013,23:916-922.
  • 4Wang Lifei,Huang Guangsheng,Zhang Hua,et al. Evolution ofspringback and neutral layer of AZ31B magnesium alloyV-bending under warm forming conditions [J]. Journal of Mate-rials Processing Technology,2013,213:844-850.
  • 5Bruni C,Forcellese A. Effect of temperature,strain rate and fi-bre orientation on the plastic flowbehaviour and formability ofAZ31 magnesium alloy [J]. Journal of Materials ProcessingTechnology,2010,210; 1354-1363.
  • 6Yasi J A. Prediction of thermal cross-slip stress in magnesiumalloys from direct first principles data [J]. Acta Materialia,2011,59:5652-5660.
  • 7Joseph A Yasi,Louis G Hector Jr,Dallas R Trinkle. First-prin-ciples data for solid-solution strengthening of magnesium : fromgeometry and chemistry to properties [J]. Acta Mater,2010,58:5704-5713.
  • 8Fatemi-Varzaneh S M,Zarei-Hanzaki A’Naderi M,et al. Defor-mation homogeneity in accumulative back extrusion processingof AZ31 magnesium alloy [J]. Journal of Alloys and Com-pounds ,2010,507: 207-214.
  • 9Xu Jie, Mahmood Shirooyeh, Jittrapom Wongsa-Ngam, et al.Hardness homogeneity and micro-tensile behavior in a magne-sium AZ31 alloy processed by equal-channel angular pressing[J]. Materials Science & Engineering A,2013,586: 108-114.
  • 10Shima Sabbaghianrad, Terence G Langdon. A critical evalua-tion of the processing of an aluminum 7075 alloy using a com-bination of ECAP and HPT [J]. Materials Science and Engi-neering: A, 2014,596: 52-58.

同被引文献16

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部