期刊文献+

哺乳动物细胞色素P450酶中底物识别位点与功能的进化关系 被引量:2

Evolutionary Relationship of Substrate Recognition Sites with Protein Functions of Mammalian Cytochrome P450 Enzymes
原文传递
导出
摘要 细胞色素P450(cytochromeP450,CYP)酶存在于所有哺乳动物中,它们从共同的祖先通过基因倍增进化而来,以一种“爆炸性”的趋势形成了庞大的超家族。除代谢脂质等内源性物质外,部分CYP酶还在药物等外源性物质的代谢方面起到重要作用。通过收集和注释哺乳动物CYP酶的序列发现,家族规模发生显著变化的七个活跃亚家族均属于CYPl~4家族.相比之下,非CYPl~4家族的家族规模则基本保持稳定。基于二级结构的预测结果,六段底物识别位点(substrerecognitionsites,SRSs)的进化速率在CYPl~4家族中,特别是活跃的亚家族中,也显著快于非CYPl~4家族。同时,SRSl~3的进化速率显著快于SRS4~6,说明SRSl.3在更大程度上决定了CYP酶在进化过程中所获得的新功能。 Cytochrome P450 (CYPs) enzymes exist in all kinds of mammals, which are descended from a single common ancestor via gene duplication and constitute a large superfamily through the expansion. Besides the lipid metabolism, CYPs are also engaged in the xenobiotics biodegradation and metabolism, especially the members of human CYP1~4 families which play important roles in drug metabolism. Seven active subfamilies (CYP2A, CYP2C, CYP2D, CYP2E, CYP2J, CYP3A and CYP4F) were found by sequence alignment and annotation, which have a strong trend to expand or shrink on the scale of family size during the evolution. In contrast, the family size of non-CYP1-4 families remains nearly the same among mammals. Evolutionary rates of six substrate recognition sites (SRSs) in CYP1-4 families, especially in the active subfamilies, are significantly higher than those in other families. In addition, SRS1-3 have faster evolutionary rates than SRS4~6, which indicates that SRS1-3 are more likely to determine the new functions of CYP enzymes during the evolution.
出处 《生物物理学报》 CAS CSCD 北大核心 2015年第2期154-164,共11页 Acta Biophysica Sinica
基金 国家"973"计划项目(2011CB910204 2011CB510102 2010CB529200) 科技部重大仪器专项项目(2012YQ03026108) 国家科技支撑计划项目(2013BAI101B09) 国家自然科学基金项目(31301032) 中国博士后科学基金项目(2013M531226)~~
关键词 cYP酶 家族规模 活跃亚家族 底物识别位点 进化速率 CYP Family size Active subfamily Substrate recognition sites Evolutionary rateDOI" 10.3724/SP.J.1260.2015.50017
  • 相关文献

参考文献30

  • 1Nelson DR. Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta, 2011, 1814(1): 14-18.
  • 2Nebert DW, Adesnik M, Coon M J, Estabrook RW, Gonzalez F J, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, Phillips IR, Sato R, Waterman MR. The P450 gene superfamily: Recommended nomenclature. DNA, 1987, 6(1): 1~11.
  • 3Nelson DR, Koymans L, Kamataki T, Stegeman J J, Feyereisen R, Waxman D J, Waterman MR, Gotoh O, Coon M J, Estabrook RW, Gunsalus IC, Nebert DW. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996, 6(1): 1~42.
  • 4Gotoh O. Evolution of cytochrome p450 genes from theviewpoint of genome informatics. Biol Pharm Bull, 2012, 35(6): 812-817.
  • 5Feyereisen R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta, 2011, 1814(1): 19~28.
  • 6Thomas JH. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Gene, 2007, 3(5): e67.
  • 7Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1612): 20120431. Doi: 10.1098/rstb. 2012.0431.
  • 8Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R. SuperCYP: A comprehensive database oncytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res, 2010, 38(Database issue): D237~243.
  • 9Graham SE, Peterson JA. How similar are P450s and what can their differences teach us? Arch Biochem Biophys, 1999, 369(1): 24-29.
  • 10Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure and function of cytochromes P450: A comparative analysis of three crystal structures. Structure, 1995, 3(1): 41-62.

二级参考文献38

  • 1王斌,苏喜生,张声华.一氧化氮合酶的结构及其催化机理[J].有机化学,2005,25(3):342-345. 被引量:10
  • 2Denisov, I. G.; Makris, T. M.; Sligar, S. G. Chem. Rev. 2005, 105(6), 2253.
  • 3Masatomo, M.; Hiroshi, S.; Yoshitsugu, S.; Shumpei, A.; Hiroyasu, O.; Shingo, N. Proc. Natl. Acad. Sci. U. S. A. 2007, 104(28), 11591.
  • 4Ivan, J. D.; Brian, R. C.; Jonathan, J, W.; Jay, R. W.; Harry, B. G. Proc. Natl. Acad. Sci. U. S. A. 1999, 96(23), 12987.
  • 5Scott. E. E.; He, Y. A. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(23), 13196.
  • 6Zhao, Y.-H.; White, M. A.; Muralidharaet, B. K.; Sun, L.; Halpert, J. R.; Stout, D. C. J. Biol. Chem. 2006, 281(9), 5973.
  • 7Muralidhara, B. K.; Negi, S.; Chin, C. C.; Braun, W.; Halpert, J. R. J. Biol. Chem. 2006, 281(12), 8051.
  • 8Pylypenko, 0.; Schlichting, I. Annu. Rev. Biochem. 2004, 73, 991.
  • 9Wade, R. C,; Winn, P. J.; Schlichting, I. J. Inorg. Biochem. 2004, 98(7), 1175.
  • 10Koshland, D. E. Angew. Chem.,Int. Ed. Engl. 1994, 33, 2375.

共引文献28

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部