期刊文献+

一维格点链上食饵—捕食者模型的蒙特卡洛模拟

Monte Carlo Simulation of One- Dimensional Lattice Chains Model for a Predator- Prey System
原文传递
导出
摘要 在一维格点链上定义了改进的两种群Lotka-Volterra模型,在只考虑近邻相互作用的情况下,分析了种群中每个生命个体的空间分布,及环境噪声对食饵—捕食者生命系统随时间进化的影响,利用蒙特卡洛方法,模拟计算了其动力学演化过程,给出了食饵—捕食者系统中两生命体能够长期共存,种群生态系统稳定的基本条件。 In one dimensional lattice chain we defines the improved Lotka - Volterr model of two populations, in the case of only considering the interaction neighbor, we study the spatial distribution of each individual life in population and the environmental noise of life how to effect on evolution of predator - prey system with time, by u- sing Monte Carlo method, the dynamic evolution process are simulated, the predator - prey system is given in two or- ganisms can co - exist for a long time and the population ecological basic conditions for the robust stability of the system.
出处 《阴山学刊(自然科学版)》 2015年第3期17-22,共6页 Yinshan Academic Journal(Natural Science Edition)
关键词 一维格点链 食饵-捕食者模型 环境噪声 蒙特卡洛模拟 One dimensional lattice chain The predator- prey system model Environmental noise MonteCarlo simulation
  • 相关文献

参考文献9

  • 1Washerberger. M. J, Mobilia. M, T. uber. U. C. Influence of Local Carrying Capacity Restrictions on Stochastic Predator -Prey Models[J]. J. Phys. Condens. Matter,2007,19 (6) :1088 - 1105.
  • 2Lotka. A.J. Analtical. Note on Certain Rhythmic Relationsin Organic Systems [ J ]. Biology, 1920,6:410 - 415.
  • 3Volterra. V. Lecons sur la. Theorie Mathematique De La Lutte Pour La Vie Redigees Par Marcel Brelot [ J ]. Book Review, 1931,30 : 157 - 159.
  • 4Javier. S, Tania. T. Stochastic Lattice Gas Model for a Pred- ator- Prey System[J]. Phys. Rev. E, 1993,49(10) :5073 - 5079.
  • 5Boccara. N, Roblin. O, Roger. M. Automata Network Pred- ator- Prey Model with Pursuit and Evation[ J]. Phys. Rev. E, 1994,50(6) :4531 -4541.
  • 6Rozefeld. A. F, Albano. E.V. Study of a Lattice - Gas Mod- el for a Prey - Predator System [ J ]. Physica. A, 1999,266 (4) :322 - 329.
  • 7Lipowski. A. Oscillatory Behavior in a Lattice Prey - Preda- tor System[J]. Phys. Rev. E. 1999,60(5) :5179 -5184.
  • 8Monetti. R, Rozenfeld. A, Albano. E. Study of Interacting Particle Systems: the Transition to the Oscillatory Behavior of A Prey - Predator Model [ J ]. Physica. A. 2000,283 ( 2 ) : 52 - 58.
  • 9Antal. T, Droz. M, Lipowski. A. Critical Behavior of a Lat- tice Prey - Predator Model [ J ]. Phys. Rev. E. 2001, 64 (3):1 -6.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部