期刊文献+

基于k均值聚类和自适应模板匹配的眼底出血点检测方法 被引量:12

Hemorrhages Detection in Fundus Image Based on k-Means Clustering and Adaptive Template Matching
下载PDF
导出
摘要 眼底出血点是糖尿病视网膜病变的早期症状,准确检测眼底图像中的出血点,对于构建糖尿病视网膜病变的自动筛查系统具有重要意义,本研究提出了一种基于k均值聚类和自适应模板匹配的出血点检测方法。首先利用HSV空间亮度校正以及对比度受限自适应直方图均衡化方法对眼底图像进行预处理,然后使用k均值聚类分割出候选目标,最后利用自适应归一化互相关模板匹配与支持向量机(SVM)分类器对候选目标进行筛选,从而得到真正的出血区。采用DIARETDB数据库的219幅眼底图像进行实验,本方法在图像水平的灵敏度为100%,特异性为80%,准确率为92.4%,在病灶水平的灵敏度为89%,阳性预测值为87.3%。结果表明本方法能够实现眼底图像中出血点的自动检测。 Hemorrhages are early symptoms of diabetic retinopathy (DR), the accurate detection of hemorrhages in fundus images is an important contribution for building automatic screening system of DR, a novel algorithm based on k-means clustering and adaptive template matching was proposed in this work. Firstly, HSV brightness correction and contrast limited adaptive histogram equalization were applied to fundus images. Then, the candidate hemorrhages were extracted by using k-means clustering. At last, adaptive template matching with normalized cross-correlation and SVM classifier were used to screen the candidates, and the hemorrhages were detected. The approach was evaluated on 219 fundus images from the databases of DIARETDB. Using an image criterion, we achieved 100% sensitivity, 80% specificity and 92.4% accuracy. With a lesion criterion, we reached a sensitivity of 89% and a positive predictive value of 87.3%. The results show that hemorrhages in fundus images can be detected automatically using this method.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2015年第3期264-271,共8页 Chinese Journal of Biomedical Engineering
基金 天津市科技支撑计划重点项目(13ZCZDGX02100) 天津市应用基础与前沿技术研究计划一般项目(15JCYBJC16600)
关键词 眼底图像 出血点 K均值聚类 自适应模板匹配 支持向量机 fundus images hemorrhages k-means clustering adaptive template matching support vectormachine (SVM)
  • 相关文献

参考文献16

  • 1Ravishankar S, Jain A, Mittal A. Automated feature extraction for early detection of diabetic retinopathy in fundus images [ C ] //International Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009:210-217.
  • 2Jaafar HF, Nandi AK, AI-Nuaimy W. Automated detection of red lesions from digital color fundus photographs [ C ] //33rd Annual International Conference of the Engineering in Medicine and Biology Society. Boston: IEEE, 2011 : 6232 - 6235.
  • 3Nutnaree K, Smith G, Bunyarit U. Automated retinal hemorrhage detection using morphological top hat and rule-based classification [ C ] //3rd International Conference on Intelligent Computational Systems. Singapore: IEEE, 2013:39-43.
  • 4Li Tang, Niemeijer M, Abramoff MD. Splat feature classification : detection of the presence of large retinal hemorrhages [ C] //8th International Symposium on Biomedical Imaging: From Nano to Macro. Chicago: IEEE, 2011:681 - 684.
  • 5Niemeijer M, Ginneken B, Staal J, et al. Automatic detection of red lesions in digital color fundus photographs [ J ]. IEEE Transactions on Medical Imaging, 2005, 24 (5) : 584 - 592.
  • 6Hatanaka Y, Nakagawa T, Hayashi Y, et al. CAD scheme to detect hemorrhages and exudates in ocular fundus images [ J]. SPIE Medical Imaging: Computer-Aided Diagnosis, 2007, 6514 (2) : 1 -8.
  • 7Hatanaka Y, Nakagawa T, Hayashi Y, et al. Improvement of automated detection method of hemorrhages in fundus images [ C] //30th Annual International Conference of the Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008:5429 - 5432.
  • 8Saleh MD, Eswaran C. An automated decision-support system fornon-proliferative diabetic retinopathy disease based on MA and HA detection [ J ]. Computer Methods and Programs in Biomedicine, 2012, 108( 1 ) : 186 - 196.
  • 9Garcia M, Smchez CI, L6pez MI, et al. Automatic detection of red lesions in retinal images using a muhilayer perceptron neural network [ C ] //30th Annual International Conference of the Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008 : 5425 - 5428.
  • 10Garea M, L6pez MI, .lvarez D, et aL Assessment of four neural network based classifiers to automatically detect red lesions in retinal images [ J]. Medical Engineering & Physics, 2010, 32 (10) : 1085 - 1093.

同被引文献72

  • 1何余生,李忠,奚红霞,郭建光,夏启斌.气固吸附等温线的研究进展[J].离子交换与吸附,2004,20(4):376-384. 被引量:185
  • 2杨威,宋鄂,刘克辉.AGEs及脂质代谢紊乱与糖尿病视网膜病变的关系[J].吉林大学学报(医学版),2005,31(1):104-107. 被引量:4
  • 3王林丽,孟德胜.眼底出血临床研究的进展[J].食品与药品,2006,8(04A):12-15. 被引量:1
  • 4DU X, BUI T D. Retinal image segmentation based on Mumford- Shah model and Gabor wavelet filter [ C]// ICPR 2010: Proceed- ings of the 2010 20th International Conference on Pattern Recogni- tion. Washington, DC: IEEE Computer Society, 2010: 3384- 3387.
  • 5JITPAKDEE P, AIMMANEE P, UYYANONVARA B. A survey on hemorrhage detection in diabetic retinopathy retinal images [ C ]// Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Infor- mation Technology. Piscataway, NJ: IEEE, 2012:1-4.
  • 6ABR)tMOFF M D, VAN GINNEKEN B, NIEMEIJER M. Automat- ic deteetion of red lesions in digital color fundus photographs: U.S. Patent 7, 474, 775[ P]. 2009-01-06.
  • 7TANG L, NIEMEIJER M, REINHARDT J M, et al. Splat featm'e classification with application to retinal hemorrhage detection in fun- dus images [ J]. IEEE Transactions on Medical Imaging, 2013, 32 (2) : 364 -375.
  • 8JING L, SI X, WU S. An improved bilinear interpolation algorithm of converting standard-definition television images to high-definition television images [ C]//ICIE 2009: Proceedings of the 2009 WASE International Conference on Information Engineering. Washington, DC: IEEE Comoutcr Societv. 2009. 2:441 -444.
  • 9CAO Q, LIU J, ZHAO Q. Fast automatic optic disc localization in retinal images [ C]// Proceedings of the 2013 1 l th International Conference on Image and Graphics. Washington, DC: IEEE Com- puter Society, 2013:827 - 831.
  • 10AZZOPARDI G, STRISCIUGLIO N, VENTO M, et at. Trainable COSFIRE filters for vessel delineation with application to retinal images [J]. Medical Image Analysis, 2015, 19(1) : 46 -57.

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部