期刊文献+

基于字典基函数框架的纤维方向分布模型重建 被引量:3

A Novel Fiber Orientation Distribution Reconstruction Method Based on Dictionary Basis Function Framework
下载PDF
导出
摘要 脑白质纤维方向分布模型重建是脑纤维成像的重要过程之一,为纤维束跟踪提供精确的纤维方向估计。传统方法的约束条件往往依赖于先验的纤维方向信息,限制了计算效率与精度的提高。提出一种基于字典基函数框架的纤维方向分布函数(f ODF)估计方法,在单位球面上建立均匀的字典基函数分布,构造基于字典基函数的球面反卷积模型,直接通过非负最小二乘方法求得基函数系数,避免伪峰与复杂的算法以及更高阶的大规模病态逆问题的计算,使得纤维方向分布的稀疏性和非负性可以通过几个基函数的加权和很容易地表示。模拟磁共振数据与临床脑部数据的实验结果显示,该方法在同等条件下与目前流行的Super-CSD和QBI方法相比,计算复杂度大大降低,计算时间仅为Super-CSD的1/3;角度分辨率扩大到20°以内(其中,Super-CSD为40°,QBI为60°)。由于该方法简单高效,角度误差不会随角度等参数的变化而跳变,也因为角度分辨率和角度误差性能的提升,使得纤维方向的错误重构概率降低到8%以下,可为纤维跟踪技术提供精确的局部纤维走向。 Brain WM fiber orientation reconstruction is the throat of fiber imaging that set the premise of fiber tractgraphy. In conventional approaches, constraint conditions are dependent on prior information of fiber orientation, limiting the improvement of computation efficiency and precision. In this work, we presented a dictionary basic function based fiber orientation distribution function (fODF) estimation method. First, the uniform distribution of dictionary basis functions on unit sphere was established; second, spherical deconvolution (SD) model based on the dictionary basis functions was established; third, the coefficients of basic functions were directly obtained using non-negative least square method. The proposed method successfully avoided the spurious peak, leases computation burden and eliminates higher order ill-posed inverse problem, which makes the sparsity and non-negativity needed for the representation straightforwardly represented by weighted sums of basic functions. Experiments on simulated and clinical brain data both verified that computational complexity of the proposed method is much less than that of Super-CSD and QBI under the same conditions, such as, computational time of the method is a third as long as that of Super-CSD ; the angular resolution of the method increases to a range of 20°, while Super-CSD is 40° and QBI is 60°. Because the method is simple and efficient, angular error does not change with such parameters as angle, and with the addition of the improvement of angular resolution and angular error performance, the probability of error fiber orientation reconstruction decreases to less than 8% , which will provide accurate local fiber orientation for fibertractgraphy.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2015年第3期297-307,共11页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61379020) 浙江省自然科学基金(LY13F030007)
关键词 字典基函数 球面反卷积 纤维方向分布 方向分布模型 dictionary basis function spherical deconvolution fiber orientation distribution orientationdistribution model
  • 相关文献

参考文献24

  • 1梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络[J].科学通报,2010,55(16):1565-1583. 被引量:161
  • 2朱丽君,朱元贵,曹河圻,董尔丹.全球脑研究计划与展望[J].中国科学基金,2013,27(6):359-362. 被引量:12
  • 3Moil S, Crain BJ, Chaeko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging [J]. Anuals of Neurology, 1999, 45(2) : 265 -269.
  • 4Mori S, van Zijl P. Fiber tracking: prineiples and strategies-a technical review[ J]. NMR in Biomedicine, 2002, 15 (7 - 8 ) : 468 - 480.
  • 5Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review[ J]. Journal of Molecular Neuroscienee, 2008, 34( 1 ): 51 -61.
  • 6Basser PJ, Mattieno J, LeBihan D. MR diffusion tensor spectroscopy and imaging [ J]. Biophysical journal, 1994, 66 (1): 259-267.
  • 7Wedeen VJ, Wang RP, Sehmahmann JD, et al. Diffusion spectrum magnetic resonance imaging (DSI) traetography of crossing fibers[J]. Neuroimagc, 2008, 41(4) : 1267 - 1277.
  • 8Cheng J, Ghosh A, Deriehe R, et al. Model-free, regularized, fast, and robust analytical orientation distribution function estimation [ C ]//Proceedings of the 13th international conference on Medical image computing and computer - assisted intervention : Part I. Berlin : Springer-Vedag, 2010 : 648 - 656.
  • 9李蓉,冯远静,邵开来,王哲进.磁共振扩散高阶张量成像的脑白质纤维微结构模型及特征提取算法[J].中国生物医学工程学报,2012,31(3):365-373. 被引量:7
  • 10Hlawitschka M, Scheuermann G. Tracking lines in higher order tensor fields [ J ]. Scier/tific Visualization : Advanced Concepts, 2010, 1 : 124 - 135.

二级参考文献163

  • 1Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157.
  • 2Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113.
  • 3Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14.
  • 4Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115.
  • 5Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126.
  • 6Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277.
  • 7Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208.
  • 8Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol, 2007, 118:449-456.
  • 9Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr, 2009, 22:119-133.
  • 10Stam C J. Functional connectivity patterns of human magnetoencephalographic recordings: A 'small-world' network? Neurosci Lett, 2004, 355:25-28.

共引文献184

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部