摘要
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
采用中频磁控溅射法在玻璃基体上制备Al掺杂ZnO薄膜(AZO),分别利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)、分光光度计及霍尔测试系统研究不同沉积条件如样品台转速和靶-基距离对薄膜光学、电学、微观形貌及晶体结构的影响。XRD结果表明,所有AZO薄膜都呈c轴择优取向,薄膜的结晶度随着样品台转速的增大而降低,且晶粒呈非平衡状态生长。而在不同的靶-基距离时,薄膜具有相似的微观结构和表面形貌。当样品台转速为0、靶-基距离为7 cm时,AZO薄膜的光电性能最好,载流子浓度和霍尔迁移率分别为5.9×1020 cm-3和13.1 cm2/(V·s)。研究结果表明,样品台转速是影响AZO膜的结构和性能的主要因素。
基金
Project(51302044)supported by the National Natural Science Foundation of China
Project(2012M521596)supported by the Chinese Postdoctoral Science Foundation
Project(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China