摘要
A neuron with injured or severed axon responds with attempts at axonal regrowth. In this regard, axonal regeneration of peripheral nerves occurs far more efficiently compared to central nervous system (CNS) neurons. The latter typically could not form a proper growth cone, and any axonal regeneration in vivo is very limited. The adult CNS environment is not conducive for axonal regrowth. An extensive body of work has revealed mechanisms whereby the myelin-associated inhibitors and extracellular matrix chondroitin sulfate proteoglycans promote collapse of axonal growth cones or repel their advances (Lee and Zheng, 2012). The intrinsic axonal regeneration capacity of an injured neuron is, however,
A neuron with injured or severed axon responds with attempts at axonal regrowth. In this regard, axonal regeneration of peripheral nerves occurs far more efficiently compared to central nervous system (CNS) neurons. The latter typically could not form a proper growth cone, and any axonal regeneration in vivo is very limited. The adult CNS environment is not conducive for axonal regrowth. An extensive body of work has revealed mechanisms whereby the myelin-associated inhibitors and extracellular matrix chondroitin sulfate proteoglycans promote collapse of axonal growth cones or repel their advances (Lee and Zheng, 2012). The intrinsic axonal regeneration capacity of an injured neuron is, however,
基金
supported by the Graduate School for Integrative Sciences and Engineering,National University of Singapore