期刊文献+

多井同期抽灌储能模式咸水层热运移特性研究 被引量:1

Researche on heat transfer characteristics of brackish aquifers upon synchronization pumping and injection energy storage mode
原文传递
导出
摘要 基于含水层储能水、热运移的基本理论与控制方程,针对地下咸水层储能过程中渗流溶液密度及黏滞系数变化显著的特点,对现有的地下含水层储能数学模型进行修正、完善,建立地下咸水层耦合储能模型,探索不同储能模式下含水层温度场变化规律及阶段性热量运移特征。研究结果得到,采用地下原水与去离子水回灌时,在储热运行期与间歇停运期粗粉砂层中热作用半径变化率分别为0.272、0.008、0.348、-0.040m/d。在储能阶段,伴随回灌溶液温度上升、盐度降低,地下水渗流速度上升,导致对流传热与热弥散效应增强;间歇阶段,则由于地下咸水与回灌溶液间盐度梯度增大,在分子扩散作用下回灌溶液温度场影响范围减弱。 In order to revise and improve the current numerical model of energy storage and recovery system in aquifers, a three-dimensional coupled numerical model of groundwater flow and heat transfer and solute movement in brackish aquifers was established based upon the thermal and mass transfer in porous media, fully making use of the significant variation of groundwater density and viscosity coefficient in energy storage and recovery in brackish aquifer. The calibrated numerical model was used to explore into the thermal transfer characteristics and the variation regularity of the geo-temperature field in different energy storage modes. The numerical predictions indicate that the thermal radius changing rates are respectively 0.272, 0. 008, 0. 348 m/d, -0.040 m/d in the coarse silt aquifer when the original brackish solution and the deionization solution recharge during the heat storage period and the intermittent recovery period. The results also show that the seepage velocity of groundwater increases while the recharge solution salinity decreases and the temperature increases during the energy storage stage, which intensifies heat convection and thermal dispersion and then increases the influence scope and range of the recharge solution temperature field. During the intermittent stage, the salinity gradient between the original brackish solution and solution recharge becomes larger when the injection salinity decreases and the mechanical dispersion capability becomes stronger, which shrinks the thermal radius of the infiltration solution in brackish aquifers.
出处 《热科学与技术》 CAS CSCD 北大核心 2015年第3期221-229,共9页 Journal of Thermal Science and Technology
基金 国家自然科学基金资助项目(41402228) 天津市高等学校科技发展基金计划资助项目(20130426) 天津建设系统软课题研究资助项目(2014-软7)
关键词 咸水层储能 耦合模型 热量运移 溶质运移 储能模式 brackish aquifer energy storage and recovery coupled numerical model thermal transferring mass transferring energy storage mode
  • 相关文献

参考文献19

  • 1VOROSMARTY C, MCINTYRE P, GESSNER M, et al. Global threats to human water security and river biodiversity [J]. Nature, 2010, 467(2): 555-561.
  • 2CHEN Z, NIE Z, ZHANG Z, et al. Isotopes and sustainability of ground water resources, North China Plain [J]. GroundWater, 2005, 43(4):485-493.
  • 3刘九龙,林黎,程万庆.天津市地下水源热泵系统适宜性分区[J].吉林大学学报(地球科学版),2012,42(S1):380-385. 被引量:21
  • 4PIAO S, CIAIS P, HUANG Y, etal. The impacts of climate change on water resources and agriculture in China [J]. Nature, 2010, 467:43-51.
  • 5AKSOY N, SIMSEK C, GUNDUZ O. Groundwa- ter contamination mechanism in a geothermal field.- A case study of Balcova, Contaminant Hydrology, Turkey [J]. Journal of 2009, 103(1):13-28.
  • 6Lo RUSSO S, CIVITA M V. Open-loop groundwa- ter heat pumps development for large buildings: A case study [J]. Geothermics, 2009, 38 (3) : 335- 345.
  • 7FREEDMAN V L, WAICHLER S R, MAXKLEY R D, et al. Assessing the thermal environmental impacts of an groundwater heat pump in southeast- ern Washington State[J]. Geothermics, 2012, 42 (4) : 65-77.
  • 8NAM Y, OOKA R. Numerical simulation of ground heat and water transfer f or groundwater heat pump system based on real scale experiment [J]. Energy and Buildings, 2010, 42(1) : 69-75.
  • 9BAKHTYAR R, BROVELLI A, BARRY D A, et al. Transport of variable-density solute plumes inbeach aquifers in response to oceanic forcing [J]. Advances in Water Resources, 2013, 53 (3) :208- 224.
  • 10朱家玲,朱晓明,雷海燕.地热回灌井间压差补偿对回灌效率影响的分析[J].太阳能学报,2012,33(1):56-62. 被引量:17

二级参考文献61

共引文献49

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部