期刊文献+

Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere–Ocean System

Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere–Ocean System
下载PDF
导出
摘要 Based on a vector radiative transfer model of the atmosphere–ocean system,the influence of oceanic components on radiation processes,including polarization effects,was investigated in the wavelength region ranging from 0.380 to 0.865 μm.The components considered were phytoplankton,inorganic suspended material(sediment),and colored,dissolved organic matter.Due to their important roles in oceanic radiation processes,the sensitivity of the bidirectional reflectance to the rough ocean surface,represented by the wind velocity 10 m above the ocean surface,and aerosol,were taken into account.The results demonstrated that both radiance and polarized radiance just below the ocean surface were sensitive to the change of the concentrations of the considered components,while the dependence of polarized radiance on the observation geometry was more sensitive than radiance.Significant differences in the specular plane existed between the impacts of the phytoplankton and sediment on the degree of polarization just above the ocean surface at 670 nm.At the top of the atmosphere(TOA),polarization was relatively insensitive to changing concentrations of ocean particles at longer wavelengths.Furthermore,the radiance at the TOA in the solar plane was more sensitive to the aerosol optical thickness than wind velocity.In contrast,wind velocity strongly influenced the radiance at the TOA in the sun glint region,while the polarization degree showed less dependence in that region.Finally,a nonlinear optimal inversion method was proposed to simultaneously retrieve the aerosol and wind velocity using radiance measurement. Based on a vector radiative transfer model of the atmosphere–ocean system,the influence of oceanic components on radiation processes,including polarization effects,was investigated in the wavelength region ranging from 0.380 to 0.865 μm.The components considered were phytoplankton,inorganic suspended material(sediment),and colored,dissolved organic matter.Due to their important roles in oceanic radiation processes,the sensitivity of the bidirectional reflectance to the rough ocean surface,represented by the wind velocity 10 m above the ocean surface,and aerosol,were taken into account.The results demonstrated that both radiance and polarized radiance just below the ocean surface were sensitive to the change of the concentrations of the considered components,while the dependence of polarized radiance on the observation geometry was more sensitive than radiance.Significant differences in the specular plane existed between the impacts of the phytoplankton and sediment on the degree of polarization just above the ocean surface at 670 nm.At the top of the atmosphere(TOA),polarization was relatively insensitive to changing concentrations of ocean particles at longer wavelengths.Furthermore,the radiance at the TOA in the solar plane was more sensitive to the aerosol optical thickness than wind velocity.In contrast,wind velocity strongly influenced the radiance at the TOA in the sun glint region,while the polarization degree showed less dependence in that region.Finally,a nonlinear optimal inversion method was proposed to simultaneously retrieve the aerosol and wind velocity using radiance measurement.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第9期1186-1196,共11页 大气科学进展(英文版)
基金 supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA05100300) the National Basic Research Program of China(Grant No.2013CB955801) the National Natural Science Foundation of China(Grant Nos.41175030 and 41475136) the National Basic Research Program of China(Grant No.2014CB953703) funds from MOEJ/GOSAT&GOSAT2,JST/CREST/EMS/TEEDDA,JAXA/ Earth CARE&GCOM-C,MEXT/RECCA/SALSA,MEXT/Kakenhi/ Innovative Areas 2409,and MOEJ/ERTDF/S-12
关键词 ocean particles atmosphere–ocean system radiative transfer polarization ocean color ocean particles atmosphere–ocean system radiative transfer polarization ocean color
  • 相关文献

二级参考文献1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部