期刊文献+

基于增强回归树的水藻预测分析 被引量:3

Forecast and Analysis of Algae Based on Boosted Regression Tree
下载PDF
导出
摘要 河流水质的预测分析在保护河流水源和维护河流生态有着重要意义。由于基于多元线性回归没有处理数据缺失值的能力和决策树模型无法有效处理水质多变量的问题等原因,故两者均达不到有效预测水质影响因素的目标。本文采用的增强回归树模型能够处理缺失值和避免过度拟合问题,可以有效地对水质的藻类进行预测分析并得出综合影响测试河流中综合影响7种藻类繁殖的主要因素。实验分析结果表明,采用的增强回归树模型优于多元线性回归模型。 Forecast and analysis of water quality of rivers play an important role in the protection of water sources and the maintenance of ecology. Because the multivariate linear regression can not deal with the missing values and the model of decision trees can not deal with multiple variables of water data, the goal of forecasting the influencing factors of water quality can not be achieved effectively. In this paper, the boosted regression tree(BRT) model is used to solve the problem of the missing values and avoid over fitting, which a- vailably forecasts the main factors influencing the reproduction of seven algae of the tested rivers. Experiments indicate that BRT per- forms better than multivariate linear regression.
出处 《长春大学学报》 2015年第6期20-23,共4页 Journal of Changchun University
基金 福建省重点实验室开放课题(2014KL02)
关键词 增强回归树(BRT) 水质 预测分析 boosted regression tree (BRT) water quality forecast analysis
  • 相关文献

参考文献11

  • 1http://www, erodit, org. [ EB/OL] ( 1998 -03 -06) [2015 -02 -20].
  • 2VOLLENWEIDER R A. The Scientific Basis of Lake Eutrophication, with Particular Reference to Phosphorus and Nitrogen as Eutrophication Fac- tors[ R]. Pairs:Organisation for Economic Cooperation and Development, Technical Report DAS/DSI/68. 127. OECD, 1968:159.
  • 3李星,何宇飞,杨艳玲,梁恒,李圭白,陈牧民,关心丽.采用预测模型预测水库水的藻类生长潜力[J].哈尔滨商业大学学报(自然科学版),2008,24(1):36-39. 被引量:3
  • 4姚志红,费敏锐,孔海南,谢雳,孙林峰.基于改进遗传算法的藻类神经网络识别[J].上海交通大学学报,2007,41(11):1801-1805. 被引量:5
  • 5Chert, Q. , Mynett, A. E. , Modelling Phaeocystis globosa Bloom in Dutch Coastal Waters by Decision Trees and Nonlinear Piecewise Regression [ J ]. Ecological Modelling, 2003,176 : 277 - 290.
  • 6夏晓瑞,韦玉春,徐宁,袁兆杰,王沛.基于决策树的Landsat TM/ETM+图像中太湖蓝藻水华信息提取[J].湖泊科学,2014,26(6):907-915. 被引量:15
  • 7De' ath G. Boosted trees for ecological modeling and prediction[ J]. Eeology,2007, 88( 1 ) :243 -251.
  • 8Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology , 2008,77(4) :802 -813.
  • 9Prasad A M, Iverson L R, Liaw A. Newer classification and regression tree techniques : bagging and random forests for ecological prediction[ J] Ecesystems ,2006,9 ( 2 ) : 181 - 199.
  • 10曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较[J].生态学报,2005,25(8):2031-2040. 被引量:69

二级参考文献87

共引文献87

同被引文献58

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部