期刊文献+

基于Hammerstein-Wiener模型的广义预测控制 被引量:5

Generalized predictive control based on Hammerstein-Wiener model
下载PDF
导出
摘要 提出了一种新型的基于Hammerstein-Wiener模型的广义预测控制策略。采用基于最小二乘支持向量机的Hammerstein-Wiener模型描述非线性系统动态特性,作为被控对象预测模型。同时,针对现有遗传算法和混沌粒子群优化算法收敛速度慢和精度低等缺点,给出一种拟牛顿信赖域混沌粒子群混合优化算法,作为预测控制的滚动优化策略,函数测试和非线性对象的广义预测控制的滚动优化表明该算法的优越性。最后,对设计的预测控制器进行实例仿真,结果表明它能满足系统实时稳定运行的需求,取得了良好的控制效果。 A novel generalized predictive control (GPC) strategy based on the Hammerstein-Wiener model is proposed. The dynamic characteristics of the nonlinear system are described by the Hammerstein-Wiener model based on the support vector machine, so a prediction model of the controlled object is obtained. Further- more, an optimization algorithm of chaotic particle swarm combined with quasi Newton trust region (QN-TR) is pro- posed in order to avoid the deficiency of slow convergence speed and low accuracy of the genetic algorithm and the cha- otic particle swarm optimization (CPSO) algorithm, so a rolling optimization strategy of the predictive control is ob- tained. Function tests and rolling optimization of the GPC to the nonlinear object reflect the superiority of the algo rithm. Finally, the results of the simulation example for the generalized predictive controller show that it can meet the demand of real-time and stable operation of the system, and a good control effect is obtained.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1874-1879,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(51307074) 江苏省博士后基金(1301005B)资助课题
关键词 广义预测控制 HAMMERSTEIN-WIENER模型 拟牛顿信赖域 混沌粒子群 generalized predictive control(GPC) Hammerstein-Wiener model quasi-Newton trust region(QN-TR) chaotic particle swarm optimization(CPSO)
  • 相关文献

参考文献20

  • 1Clarke D W, Mohtadi C, Turfs P S. Generalized predictive con- trol[J].Automatica, 1987, 23(2): 137-148.
  • 2袁震东.基于ARMAX模型的广义预侧控制[J].控制理论与应用,1988,5(1):12-17.
  • 3Akpan V A, Hassapis G D. Nonlinear model identification and adaptive model predictive control using neural networks[J]. Trans. on ISA,2011,50(2) :177 - 194.
  • 4王爽心,董旸,刘海瑞.基于T-S模型和小世界优化算法的广义非线性预测控制[J].控制与决策,2011,26(5):673-678. 被引量:11
  • 5Zhang S T, Bai S Z. Controller design of uncertain nonlinear systems based on T-S fuzzy model[J]. Control Theory & Appli- cations, 2009, 7(2): 139- 143.
  • 6Zhu Y C. Estimation of an N L-N Hammerstein-Wiener model[J]. Autozru2tica, 2002, 38: 1067- 1614.
  • 7Wills A, Schan T B, Ljung L, et al. Identification of Hammer stein-Wiener models[J]. Automatica, 2013,49 (1) : 70 - 81.
  • 8Ding B, Huang B. Output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model[J]. Control Theory & Applications, 2007, 1(5): 1302-1310.
  • 9Bloemen H H J, Van Den Boom T J J, Verbruggen H B. Model based predictive control for Hammerstein-Wiener systems[J]. International Journal of Control, 2001, 74(5) : 482 - 495.
  • 10童朝南,肖磊,彭开香,李江昀.基于遗传算法的结晶器液位约束广义预测控制[J].控制与决策,2009,24(11):1735-1739. 被引量:13

二级参考文献64

共引文献161

同被引文献38

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部